Properties

Label 2-1824-12.11-c1-0-1
Degree $2$
Conductor $1824$
Sign $-0.849 + 0.528i$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.68 − 0.392i)3-s + 3.60i·5-s + 0.570i·7-s + (2.69 + 1.32i)9-s − 1.81·11-s − 4.81·13-s + (1.41 − 6.07i)15-s + 6.70i·17-s i·19-s + (0.224 − 0.962i)21-s + 4.05·23-s − 7.98·25-s + (−4.01 − 3.29i)27-s + 3.76i·29-s + 7.33i·31-s + ⋯
L(s)  = 1  + (−0.973 − 0.226i)3-s + 1.61i·5-s + 0.215i·7-s + (0.897 + 0.441i)9-s − 0.547·11-s − 1.33·13-s + (0.365 − 1.56i)15-s + 1.62i·17-s − 0.229i·19-s + (0.0489 − 0.210i)21-s + 0.844·23-s − 1.59·25-s + (−0.773 − 0.633i)27-s + 0.698i·29-s + 1.31i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.849 + 0.528i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.849 + 0.528i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $-0.849 + 0.528i$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1824} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ -0.849 + 0.528i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3278701540\)
\(L(\frac12)\) \(\approx\) \(0.3278701540\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.68 + 0.392i)T \)
19 \( 1 + iT \)
good5 \( 1 - 3.60iT - 5T^{2} \)
7 \( 1 - 0.570iT - 7T^{2} \)
11 \( 1 + 1.81T + 11T^{2} \)
13 \( 1 + 4.81T + 13T^{2} \)
17 \( 1 - 6.70iT - 17T^{2} \)
23 \( 1 - 4.05T + 23T^{2} \)
29 \( 1 - 3.76iT - 29T^{2} \)
31 \( 1 - 7.33iT - 31T^{2} \)
37 \( 1 + 3.33T + 37T^{2} \)
41 \( 1 + 8.85iT - 41T^{2} \)
43 \( 1 + 9.05iT - 43T^{2} \)
47 \( 1 + 0.0706T + 47T^{2} \)
53 \( 1 + 2.91iT - 53T^{2} \)
59 \( 1 + 11.8T + 59T^{2} \)
61 \( 1 - 11.5T + 61T^{2} \)
67 \( 1 + 0.707iT - 67T^{2} \)
71 \( 1 + 4.66T + 71T^{2} \)
73 \( 1 + 12.2T + 73T^{2} \)
79 \( 1 + 1.85iT - 79T^{2} \)
83 \( 1 - 15.8T + 83T^{2} \)
89 \( 1 - 6.26iT - 89T^{2} \)
97 \( 1 + 9.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15978898449819238305794976422, −8.987331547451854172696416364544, −7.86699374310211613558483547887, −6.97704989640717641402198740055, −6.83920207024938266221424053030, −5.71121116215917290317084168824, −5.10304923480626835910339577015, −3.87556156020234899566323619997, −2.81834357530216372057057410759, −1.86010576121065740820091561934, 0.15268745302855789899508635749, 1.12311205525748513923931352161, 2.63458802841328522738835625723, 4.21441574348749560198783767210, 4.89592386350462037041405780013, 5.22085304174593137714589809664, 6.21905562003221656421913009770, 7.35951070664021523195791793543, 7.83884305066768192427008789091, 9.061959749940197254897557560762

Graph of the $Z$-function along the critical line