Properties

Label 2-1824-12.11-c1-0-62
Degree $2$
Conductor $1824$
Sign $-0.779 + 0.625i$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.188 + 1.72i)3-s − 2.77i·5-s − 4.28i·7-s + (−2.92 − 0.650i)9-s − 3.54·11-s + 4.92·13-s + (4.77 + 0.523i)15-s + 5.04i·17-s + i·19-s + (7.37 + 0.808i)21-s − 5.26·23-s − 2.69·25-s + (1.67 − 4.91i)27-s − 6.16i·29-s − 1.60i·31-s + ⋯
L(s)  = 1  + (−0.108 + 0.994i)3-s − 1.24i·5-s − 1.61i·7-s + (−0.976 − 0.216i)9-s − 1.06·11-s + 1.36·13-s + (1.23 + 0.135i)15-s + 1.22i·17-s + 0.229i·19-s + (1.60 + 0.176i)21-s − 1.09·23-s − 0.539·25-s + (0.321 − 0.946i)27-s − 1.14i·29-s − 0.288i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.779 + 0.625i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.779 + 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $-0.779 + 0.625i$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1824} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ -0.779 + 0.625i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7144162833\)
\(L(\frac12)\) \(\approx\) \(0.7144162833\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.188 - 1.72i)T \)
19 \( 1 - iT \)
good5 \( 1 + 2.77iT - 5T^{2} \)
7 \( 1 + 4.28iT - 7T^{2} \)
11 \( 1 + 3.54T + 11T^{2} \)
13 \( 1 - 4.92T + 13T^{2} \)
17 \( 1 - 5.04iT - 17T^{2} \)
23 \( 1 + 5.26T + 23T^{2} \)
29 \( 1 + 6.16iT - 29T^{2} \)
31 \( 1 + 1.60iT - 31T^{2} \)
37 \( 1 - 2.39T + 37T^{2} \)
41 \( 1 - 4.50iT - 41T^{2} \)
43 \( 1 + 6.51iT - 43T^{2} \)
47 \( 1 + 10.0T + 47T^{2} \)
53 \( 1 + 3.80iT - 53T^{2} \)
59 \( 1 + 5.80T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 - 7.90iT - 67T^{2} \)
71 \( 1 + 7.38T + 71T^{2} \)
73 \( 1 + 10.5T + 73T^{2} \)
79 \( 1 + 3.32iT - 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 + 10.0iT - 89T^{2} \)
97 \( 1 - 9.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.883312945868821895764159176724, −8.219788943083455423172088739629, −7.73758734235120897058343180367, −6.25844191683018519418792217953, −5.68208765426612876460938689515, −4.52732390547127397458942455292, −4.19005703409137667379389461795, −3.33055123270650164106906655684, −1.53968310316074337303597112595, −0.26095901336744707410734027162, 1.74286247715672608775805469416, 2.79809343191345424888072850840, 3.10505363099405892241110038393, 4.96744341182510447124692855168, 5.85628627050096879664199605136, 6.28945583853848073447285642858, 7.17532158741040740617554851899, 7.946011075421578842712199077210, 8.643693864775722959508601700362, 9.405668339413737896496389385616

Graph of the $Z$-function along the critical line