L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1.46 + 2.53i)5-s + 3.81i·7-s + (−0.499 − 0.866i)9-s + 4.60i·11-s + (−2.57 + 1.48i)13-s + (−1.46 − 2.53i)15-s + (−3.87 + 6.70i)17-s + (−4.26 − 0.919i)19-s + (−3.30 − 1.90i)21-s + (7.85 − 4.53i)23-s + (−1.79 − 3.10i)25-s + 0.999·27-s + (2.34 − 1.35i)29-s + 1.07·31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.655 + 1.13i)5-s + 1.44i·7-s + (−0.166 − 0.288i)9-s + 1.38i·11-s + (−0.713 + 0.412i)13-s + (−0.378 − 0.655i)15-s + (−0.938 + 1.62i)17-s + (−0.977 − 0.211i)19-s + (−0.720 − 0.416i)21-s + (1.63 − 0.945i)23-s + (−0.358 − 0.620i)25-s + 0.192·27-s + (0.434 − 0.251i)29-s + 0.192·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.783 + 0.621i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.783 + 0.621i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9575229375\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9575229375\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (4.26 + 0.919i)T \) |
good | 5 | \( 1 + (1.46 - 2.53i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 3.81iT - 7T^{2} \) |
| 11 | \( 1 - 4.60iT - 11T^{2} \) |
| 13 | \( 1 + (2.57 - 1.48i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.87 - 6.70i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-7.85 + 4.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.34 + 1.35i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.07T + 31T^{2} \) |
| 37 | \( 1 + 0.681iT - 37T^{2} \) |
| 41 | \( 1 + (-6.78 - 3.91i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.42 - 1.40i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-9.37 + 5.41i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.25 - 0.722i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.324 - 0.561i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.62 - 9.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.28 - 3.96i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.80 + 10.0i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.28 - 5.68i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.259 - 0.449i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.15iT - 83T^{2} \) |
| 89 | \( 1 + (3.43 - 1.98i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.38 + 2.53i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.749942420922105480560454626886, −8.943802465888316982252900534100, −8.327836881208047927755538858733, −7.12455635087613479403074066006, −6.66034930901523018610107388727, −5.80060253974315190120051481820, −4.64553296653382290575407160837, −4.13867925040862603212831987358, −2.73684078620429440859546734830, −2.20625723666037852812346445656,
0.46741479766044219904322404773, 0.951937936457600914757168956086, 2.73822202223287295028446188535, 3.87664992884782645026642887726, 4.72195795425045182761265432231, 5.35262613302079210061332724445, 6.56737105571530833581689599756, 7.31104886602584356364616164071, 7.86746845678122861150163028660, 8.762652160639935009392935401432