Properties

Label 2-182-1.1-c5-0-11
Degree $2$
Conductor $182$
Sign $-1$
Analytic cond. $29.1898$
Root an. cond. $5.40276$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 15.5·3-s + 16·4-s − 109.·5-s + 62.1·6-s + 49·7-s − 64·8-s − 1.94·9-s + 438.·10-s + 650.·11-s − 248.·12-s + 169·13-s − 196·14-s + 1.70e3·15-s + 256·16-s + 1.34e3·17-s + 7.79·18-s − 2.66e3·19-s − 1.75e3·20-s − 760.·21-s − 2.60e3·22-s + 1.44e3·23-s + 993.·24-s + 8.88e3·25-s − 676·26-s + 3.80e3·27-s + 784·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.995·3-s + 0.5·4-s − 1.96·5-s + 0.704·6-s + 0.377·7-s − 0.353·8-s − 0.00801·9-s + 1.38·10-s + 1.61·11-s − 0.497·12-s + 0.277·13-s − 0.267·14-s + 1.95·15-s + 0.250·16-s + 1.13·17-s + 0.00566·18-s − 1.69·19-s − 0.980·20-s − 0.376·21-s − 1.14·22-s + 0.568·23-s + 0.352·24-s + 2.84·25-s − 0.196·26-s + 1.00·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(29.1898\)
Root analytic conductor: \(5.40276\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
7 \( 1 - 49T \)
13 \( 1 - 169T \)
good3 \( 1 + 15.5T + 243T^{2} \)
5 \( 1 + 109.T + 3.12e3T^{2} \)
11 \( 1 - 650.T + 1.61e5T^{2} \)
17 \( 1 - 1.34e3T + 1.41e6T^{2} \)
19 \( 1 + 2.66e3T + 2.47e6T^{2} \)
23 \( 1 - 1.44e3T + 6.43e6T^{2} \)
29 \( 1 + 791.T + 2.05e7T^{2} \)
31 \( 1 + 4.73e3T + 2.86e7T^{2} \)
37 \( 1 - 4.66e3T + 6.93e7T^{2} \)
41 \( 1 - 6.68e3T + 1.15e8T^{2} \)
43 \( 1 + 7.85e3T + 1.47e8T^{2} \)
47 \( 1 + 1.09e4T + 2.29e8T^{2} \)
53 \( 1 + 7.28e3T + 4.18e8T^{2} \)
59 \( 1 - 3.29e4T + 7.14e8T^{2} \)
61 \( 1 + 4.39e4T + 8.44e8T^{2} \)
67 \( 1 + 6.32e4T + 1.35e9T^{2} \)
71 \( 1 - 4.52e3T + 1.80e9T^{2} \)
73 \( 1 + 2.87e4T + 2.07e9T^{2} \)
79 \( 1 - 6.17e4T + 3.07e9T^{2} \)
83 \( 1 - 1.96e3T + 3.93e9T^{2} \)
89 \( 1 - 1.11e5T + 5.58e9T^{2} \)
97 \( 1 + 5.23e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.28992784056441275137221153542, −10.68307754355158807392074146148, −9.004009825644976831188782771300, −8.202666793745011033078395217439, −7.16412305078910652557667791640, −6.19321732383801264809656579534, −4.57906818973859686868759385469, −3.50793479878521672691882986135, −1.11055537185174085601103602485, 0, 1.11055537185174085601103602485, 3.50793479878521672691882986135, 4.57906818973859686868759385469, 6.19321732383801264809656579534, 7.16412305078910652557667791640, 8.202666793745011033078395217439, 9.004009825644976831188782771300, 10.68307754355158807392074146148, 11.28992784056441275137221153542

Graph of the $Z$-function along the critical line