L(s) = 1 | + (0.866 + 0.5i)2-s + 1.40·3-s + (0.499 + 0.866i)4-s + (−0.552 + 0.319i)5-s + (1.21 + 0.703i)6-s + (−0.103 + 2.64i)7-s + 0.999i·8-s − 1.02·9-s − 0.638·10-s − 4.54i·11-s + (0.703 + 1.21i)12-s + (2.48 − 2.61i)13-s + (−1.41 + 2.23i)14-s + (−0.777 + 0.448i)15-s + (−0.5 + 0.866i)16-s + (0.354 + 0.613i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + 0.811·3-s + (0.249 + 0.433i)4-s + (−0.247 + 0.142i)5-s + (0.497 + 0.287i)6-s + (−0.0392 + 0.999i)7-s + 0.353i·8-s − 0.340·9-s − 0.201·10-s − 1.37i·11-s + (0.202 + 0.351i)12-s + (0.688 − 0.725i)13-s + (−0.377 + 0.598i)14-s + (−0.200 + 0.115i)15-s + (−0.125 + 0.216i)16-s + (0.0859 + 0.148i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.767 - 0.641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.767 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75158 + 0.635424i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75158 + 0.635424i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.103 - 2.64i)T \) |
| 13 | \( 1 + (-2.48 + 2.61i)T \) |
good | 3 | \( 1 - 1.40T + 3T^{2} \) |
| 5 | \( 1 + (0.552 - 0.319i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 4.54iT - 11T^{2} \) |
| 17 | \( 1 + (-0.354 - 0.613i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + 7.34iT - 19T^{2} \) |
| 23 | \( 1 + (3.25 - 5.63i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.63 + 6.29i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.75 - 3.31i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.82 - 1.05i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.62 + 2.66i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.21 - 9.02i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.68 - 0.972i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.20 + 5.54i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.87 - 1.65i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 6.83T + 61T^{2} \) |
| 67 | \( 1 - 3.92iT - 67T^{2} \) |
| 71 | \( 1 + (9.11 + 5.26i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.55 - 3.20i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.48 - 9.49i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 2.41iT - 83T^{2} \) |
| 89 | \( 1 + (-4.79 - 2.76i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.96 + 4.59i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.23682872816178579351699176474, −11.64450156623077904411326731501, −11.22665805404129057136570444227, −9.428726274511940012062638954958, −8.495824037909295770240165733029, −7.84870119764123390286962879612, −6.21625549513982940724490831700, −5.41129594371211237548509037444, −3.57774580050629020066226320773, −2.72220273343157236347758397105,
1.98716291403814584283504598023, 3.67372022877390617836175657218, 4.45645208273136498580664526144, 6.17872434835218983564944457365, 7.42405800851026301534885500877, 8.413195429791166736755174468521, 9.726140363430051821898923279963, 10.50109628814876066301871806915, 11.76350402516444545867765531920, 12.56516992367980721478576053625