L(s) = 1 | + i·2-s + 1.52·3-s − 4-s + 4.16i·5-s + 1.52i·6-s − i·7-s − i·8-s − 0.688·9-s − 4.16·10-s − 4.64i·11-s − 1.52·12-s + (0.0843 + 3.60i)13-s + 14-s + 6.33i·15-s + 16-s + 6.33·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.877·3-s − 0.5·4-s + 1.86i·5-s + 0.620i·6-s − 0.377i·7-s − 0.353i·8-s − 0.229·9-s − 1.31·10-s − 1.40i·11-s − 0.438·12-s + (0.0233 + 0.999i)13-s + 0.267·14-s + 1.63i·15-s + 0.250·16-s + 1.53·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0233 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0233 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.975910 + 0.999010i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.975910 + 0.999010i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 + (-0.0843 - 3.60i)T \) |
good | 3 | \( 1 - 1.52T + 3T^{2} \) |
| 5 | \( 1 - 4.16iT - 5T^{2} \) |
| 11 | \( 1 + 4.64iT - 11T^{2} \) |
| 17 | \( 1 - 6.33T + 17T^{2} \) |
| 19 | \( 1 + 2.16iT - 19T^{2} \) |
| 23 | \( 1 - 3.68T + 23T^{2} \) |
| 29 | \( 1 - 5.04T + 29T^{2} \) |
| 31 | \( 1 + 4.64iT - 31T^{2} \) |
| 37 | \( 1 - 1.68iT - 37T^{2} \) |
| 41 | \( 1 + 9.68iT - 41T^{2} \) |
| 43 | \( 1 + 4.33T + 43T^{2} \) |
| 47 | \( 1 + 3.35iT - 47T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 - 9.54iT - 59T^{2} \) |
| 61 | \( 1 - 0.479T + 61T^{2} \) |
| 67 | \( 1 - 0.311iT - 67T^{2} \) |
| 71 | \( 1 + 6.08iT - 71T^{2} \) |
| 73 | \( 1 - 1.35iT - 73T^{2} \) |
| 79 | \( 1 + 14.0T + 79T^{2} \) |
| 83 | \( 1 - 11.4iT - 83T^{2} \) |
| 89 | \( 1 - 1.66iT - 89T^{2} \) |
| 97 | \( 1 + 2.31iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62405677943352228390227679644, −11.70420852337368912725186954952, −10.84743716981368254866687861337, −9.807201275820651700103343000062, −8.659304720059987047037101468267, −7.66141112160342595398190756070, −6.79232533876275435002204542431, −5.78873243066428453348730183154, −3.68606491323317005485094810225, −2.86526960208275699524225764029,
1.47175011651461004066187776997, 3.13493755301173827709043128841, 4.65569962924037068855490432691, 5.51621091837391478117587636996, 7.85791140172067571607550815689, 8.430749024906641646623153031276, 9.420666715777001667592578038828, 10.04362747285265651607986858340, 11.77598934474117168128917714919, 12.58621480881133477929492751646