L(s) = 1 | + 1.47i·2-s + 2.48i·3-s − 0.187·4-s + (0.111 + 2.23i)5-s − 3.67·6-s − 3.24i·7-s + 2.68i·8-s − 3.16·9-s + (−3.30 + 0.165i)10-s − 4.18·11-s − 0.466i·12-s + 1.78i·13-s + 4.80·14-s + (−5.54 + 0.278i)15-s − 4.34·16-s + 6.33i·17-s + ⋯ |
L(s) = 1 | + 1.04i·2-s + 1.43i·3-s − 0.0939·4-s + (0.0500 + 0.998i)5-s − 1.49·6-s − 1.22i·7-s + 0.947i·8-s − 1.05·9-s + (−1.04 + 0.0523i)10-s − 1.26·11-s − 0.134i·12-s + 0.494i·13-s + 1.28·14-s + (−1.43 + 0.0718i)15-s − 1.08·16-s + 1.53i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0500 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0500 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.234387341\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.234387341\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.111 - 2.23i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - 1.47iT - 2T^{2} \) |
| 3 | \( 1 - 2.48iT - 3T^{2} \) |
| 7 | \( 1 + 3.24iT - 7T^{2} \) |
| 11 | \( 1 + 4.18T + 11T^{2} \) |
| 13 | \( 1 - 1.78iT - 13T^{2} \) |
| 17 | \( 1 - 6.33iT - 17T^{2} \) |
| 23 | \( 1 + 1.43iT - 23T^{2} \) |
| 29 | \( 1 + 0.339T + 29T^{2} \) |
| 31 | \( 1 - 2.77T + 31T^{2} \) |
| 37 | \( 1 - 2.70iT - 37T^{2} \) |
| 41 | \( 1 - 7.13T + 41T^{2} \) |
| 43 | \( 1 + 9.89iT - 43T^{2} \) |
| 47 | \( 1 + 0.445iT - 47T^{2} \) |
| 53 | \( 1 + 7.23iT - 53T^{2} \) |
| 59 | \( 1 - 3.14T + 59T^{2} \) |
| 61 | \( 1 + 3.06T + 61T^{2} \) |
| 67 | \( 1 + 8.55iT - 67T^{2} \) |
| 71 | \( 1 + 12.8T + 71T^{2} \) |
| 73 | \( 1 - 1.82iT - 73T^{2} \) |
| 79 | \( 1 - 0.698T + 79T^{2} \) |
| 83 | \( 1 - 0.552iT - 83T^{2} \) |
| 89 | \( 1 - 6.82T + 89T^{2} \) |
| 97 | \( 1 - 13.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16596780459535474997652807153, −9.019433989687755771269634390415, −8.077393302133563267807513037192, −7.49407601196131171113261005963, −6.67739741839831973055344273427, −5.93994126990162575224553341970, −5.03575547222611732446988713612, −4.18379226489942793167058592450, −3.43017130801410695475251765592, −2.24791136357223611289172852255,
0.43386073469528145439414528945, 1.46080839406615391946207434646, 2.52156638117698552051263658105, 2.84219016561369753819481933688, 4.56338078485042027443855006669, 5.51608905252760990194879307234, 6.14055264819880501177636525156, 7.35107514943838613334604847444, 7.80647943097903773825248076137, 8.749280648067443745930887685252