L(s) = 1 | + 1.41·2-s + 2.00·4-s + 2.82·8-s − 4.47i·11-s + 6.32i·13-s + 4.00·16-s + 2.82·17-s − 6.32i·22-s + 5.65·23-s + 8.94i·26-s + 4.47i·29-s + 2·31-s + 5.65·32-s + 4.00·34-s − 6.32i·37-s + ⋯ |
L(s) = 1 | + 1.00·2-s + 1.00·4-s + 1.00·8-s − 1.34i·11-s + 1.75i·13-s + 1.00·16-s + 0.685·17-s − 1.34i·22-s + 1.17·23-s + 1.75i·26-s + 0.830i·29-s + 0.359·31-s + 1.00·32-s + 0.685·34-s − 1.03i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.642136967\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.642136967\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 4.47iT - 11T^{2} \) |
| 13 | \( 1 - 6.32iT - 13T^{2} \) |
| 17 | \( 1 - 2.82T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 - 5.65T + 23T^{2} \) |
| 29 | \( 1 - 4.47iT - 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + 6.32iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 12.6iT - 43T^{2} \) |
| 47 | \( 1 - 11.3T + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 4.47iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 12.6iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 + 14T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.117966693328301253255379227158, −8.569434023416496913515125650197, −7.35257843648195950322137341860, −6.84400101793898608959813966454, −5.90842224045289553594375133979, −5.26724058838719926595848995352, −4.22620944874835906214169105691, −3.49739731886081680667106932138, −2.50943519037463279362645708739, −1.25508048454219950982752110544,
1.24025684309267722243947601469, 2.60570161908968463137462635355, 3.29376860517439215172738799966, 4.47753294219461311597704097934, 5.09785867125132723204938054807, 5.92232556484349220390557285734, 6.79136744912557205867992485068, 7.66096688729113492808640862789, 8.100130925687431853901520614265, 9.527032537369586279145738411508