| L(s) = 1 | + (0.331 + 1.37i)2-s + (−1.78 + 0.910i)4-s − 0.936i·7-s + (−1.84 − 2.14i)8-s + 2.20i·11-s + 3.33i·13-s + (1.28 − 0.310i)14-s + (2.34 − 3.24i)16-s + 1.54i·17-s + 3.12·19-s + (−3.03 + 0.731i)22-s + 3.39·23-s + (−4.58 + 1.10i)26-s + (0.852 + 1.66i)28-s − 8.44·29-s + ⋯ |
| L(s) = 1 | + (0.234 + 0.972i)2-s + (−0.890 + 0.455i)4-s − 0.353i·7-s + (−0.650 − 0.759i)8-s + 0.665i·11-s + 0.924i·13-s + (0.344 − 0.0828i)14-s + (0.585 − 0.810i)16-s + 0.374i·17-s + 0.716·19-s + (−0.647 + 0.155i)22-s + 0.707·23-s + (−0.899 + 0.216i)26-s + (0.161 + 0.315i)28-s − 1.56·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 + 0.0932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.086249706\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.086249706\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.331 - 1.37i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + 0.936iT - 7T^{2} \) |
| 11 | \( 1 - 2.20iT - 11T^{2} \) |
| 13 | \( 1 - 3.33iT - 13T^{2} \) |
| 17 | \( 1 - 1.54iT - 17T^{2} \) |
| 19 | \( 1 - 3.12T + 19T^{2} \) |
| 23 | \( 1 - 3.39T + 23T^{2} \) |
| 29 | \( 1 + 8.44T + 29T^{2} \) |
| 31 | \( 1 - 8.30iT - 31T^{2} \) |
| 37 | \( 1 + 7.60iT - 37T^{2} \) |
| 41 | \( 1 - 5.83iT - 41T^{2} \) |
| 43 | \( 1 + 7.77T + 43T^{2} \) |
| 47 | \( 1 + 10.7T + 47T^{2} \) |
| 53 | \( 1 + 5.08T + 53T^{2} \) |
| 59 | \( 1 - 10.6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 12.1T + 67T^{2} \) |
| 71 | \( 1 + 11.7T + 71T^{2} \) |
| 73 | \( 1 - 5.59T + 73T^{2} \) |
| 79 | \( 1 + 1.02iT - 79T^{2} \) |
| 83 | \( 1 - 14.0iT - 83T^{2} \) |
| 89 | \( 1 - 13.0iT - 89T^{2} \) |
| 97 | \( 1 + 2.18T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.409535184229022672005463538317, −8.897654646092229554308438684031, −7.907524272692106608043696568811, −7.17278121183128679413510411201, −6.69901781839934536944647312132, −5.65665553853256327679757348178, −4.86347825366081987254037729325, −4.08038216613862578419336473825, −3.15719095999260024207872208649, −1.53386903590693862384342872130,
0.38135812822674237884447352444, 1.73136563489119390576809121809, 2.96464610805103479503287057296, 3.49430589522518187771451236147, 4.74097872321008043521855241703, 5.47138048031824498220011467905, 6.14925661441136367558718500217, 7.46579539748514203318307763696, 8.269354675811050327084210409207, 9.059326405610369230166555173581