Properties

Label 4-180e2-1.1-c2e2-0-1
Degree $4$
Conductor $32400$
Sign $1$
Analytic cond. $24.0555$
Root an. cond. $2.21464$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s − 14·7-s − 20·11-s + 18·13-s − 2·17-s + 46·23-s + 11·25-s − 28·31-s − 84·35-s + 66·37-s + 28·41-s − 30·43-s + 78·47-s + 98·49-s + 14·53-s − 120·55-s + 84·61-s + 108·65-s − 14·67-s − 196·71-s + 98·73-s + 280·77-s + 126·83-s − 12·85-s − 252·91-s + 66·97-s − 52·101-s + ⋯
L(s)  = 1  + 6/5·5-s − 2·7-s − 1.81·11-s + 1.38·13-s − 0.117·17-s + 2·23-s + 0.439·25-s − 0.903·31-s − 2.39·35-s + 1.78·37-s + 0.682·41-s − 0.697·43-s + 1.65·47-s + 2·49-s + 0.264·53-s − 2.18·55-s + 1.37·61-s + 1.66·65-s − 0.208·67-s − 2.76·71-s + 1.34·73-s + 3.63·77-s + 1.51·83-s − 0.141·85-s − 2.76·91-s + 0.680·97-s − 0.514·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(32400\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(24.0555\)
Root analytic conductor: \(2.21464\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 32400,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.635152300\)
\(L(\frac12)\) \(\approx\) \(1.635152300\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 - 6 T + p^{2} T^{2} \)
good7$C_1$$\times$$C_2$ \( ( 1 + p T )^{2}( 1 + p^{2} T^{2} ) \)
11$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 18 T + 162 T^{2} - 18 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 658 T^{2} + p^{4} T^{4} \)
23$C_1$$\times$$C_2$ \( ( 1 - p T )^{2}( 1 + p^{2} T^{2} ) \)
29$C_2^2$ \( 1 - 1618 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 66 T + 2178 T^{2} - 66 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 30 T + 450 T^{2} + 30 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 78 T + 3042 T^{2} - 78 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 14 T + 98 T^{2} - 14 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 3826 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 + 98 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 98 T + 4802 T^{2} - 98 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 3266 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 126 T + 7938 T^{2} - 126 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 3298 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 66 T + 2178 T^{2} - 66 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87611320147649623690295275316, −12.56192552109916513188340971956, −11.63957745364878619939023721189, −10.91943890239847995863245450906, −10.67637820374118812343922874781, −10.20579789019748764004745778801, −9.655469320217962439390715272160, −9.226251452394690047860928128234, −8.885453364659721127959967203300, −8.136288116033429805603106731066, −7.38334890744579500915392245086, −6.87359774180022938643796571344, −6.26437850337862027166954598565, −5.74148252498489561686975386972, −5.48051454771260795604611242705, −4.49482524437903687438284595150, −3.46434196438576122962812653957, −2.94018654793248844038244452645, −2.28260129572071880616325647275, −0.76678388220796601964567880951, 0.76678388220796601964567880951, 2.28260129572071880616325647275, 2.94018654793248844038244452645, 3.46434196438576122962812653957, 4.49482524437903687438284595150, 5.48051454771260795604611242705, 5.74148252498489561686975386972, 6.26437850337862027166954598565, 6.87359774180022938643796571344, 7.38334890744579500915392245086, 8.136288116033429805603106731066, 8.885453364659721127959967203300, 9.226251452394690047860928128234, 9.655469320217962439390715272160, 10.20579789019748764004745778801, 10.67637820374118812343922874781, 10.91943890239847995863245450906, 11.63957745364878619939023721189, 12.56192552109916513188340971956, 12.87611320147649623690295275316

Graph of the $Z$-function along the critical line