L(s) = 1 | + (1.40 + 0.187i)2-s + (0.398 + 1.68i)3-s + (1.92 + 0.525i)4-s + (−0.866 − 0.5i)5-s + (0.242 + 2.43i)6-s + (−0.891 + 0.514i)7-s + (2.60 + 1.09i)8-s + (−2.68 + 1.34i)9-s + (−1.12 − 0.863i)10-s + (−1.84 − 3.20i)11-s + (−0.117 + 3.46i)12-s + (2.52 − 4.37i)13-s + (−1.34 + 0.554i)14-s + (0.497 − 1.65i)15-s + (3.44 + 2.02i)16-s − 2.05i·17-s + ⋯ |
L(s) = 1 | + (0.991 + 0.132i)2-s + (0.230 + 0.973i)3-s + (0.964 + 0.262i)4-s + (−0.387 − 0.223i)5-s + (0.0990 + 0.995i)6-s + (−0.337 + 0.194i)7-s + (0.921 + 0.388i)8-s + (−0.894 + 0.447i)9-s + (−0.354 − 0.272i)10-s + (−0.557 − 0.965i)11-s + (−0.0338 + 0.999i)12-s + (0.700 − 1.21i)13-s + (−0.359 + 0.148i)14-s + (0.128 − 0.428i)15-s + (0.861 + 0.507i)16-s − 0.497i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.77668 + 0.854448i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.77668 + 0.854448i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.40 - 0.187i)T \) |
| 3 | \( 1 + (-0.398 - 1.68i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
good | 7 | \( 1 + (0.891 - 0.514i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.84 + 3.20i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.52 + 4.37i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.05iT - 17T^{2} \) |
| 19 | \( 1 - 5.65iT - 19T^{2} \) |
| 23 | \( 1 + (-0.155 + 0.269i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.860 - 0.496i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.53 + 2.03i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 8.38T + 37T^{2} \) |
| 41 | \( 1 + (8.46 + 4.88i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.19 - 2.42i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.29 + 9.17i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.37iT - 53T^{2} \) |
| 59 | \( 1 + (4.06 - 7.04i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.17 - 12.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.86 - 2.22i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.205T + 71T^{2} \) |
| 73 | \( 1 + 5.22T + 73T^{2} \) |
| 79 | \( 1 + (-11.7 + 6.75i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.107 + 0.187i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 18.2iT - 89T^{2} \) |
| 97 | \( 1 + (4.83 + 8.37i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.00080078182306119470429139725, −11.82169408684537448928584861406, −10.92008354183334433140700307170, −10.10527299485192772934053793647, −8.565265331548674063519082403160, −7.78765062539062473795383622632, −5.98106583962876524887774042708, −5.26996756516422254378482232032, −3.82655261185846160694298773260, −2.99364919681871623882096637969,
1.96952048776536602571778264253, 3.40465208921572855667654797046, 4.81022038266505742307744737301, 6.43287465891356943376078468771, 6.98092819997861447360381070867, 8.099611960915151806298731585778, 9.592722203672632274539365967898, 11.05483086273622644088395599656, 11.67575920885265222531287038288, 12.82199419344332260670019483125