L(s) = 1 | + (1.08 + 0.901i)2-s + (1.35 − 1.07i)3-s + (0.373 + 1.96i)4-s + (0.866 + 0.5i)5-s + (2.44 + 0.0473i)6-s + (−3.33 + 1.92i)7-s + (−1.36 + 2.47i)8-s + (0.673 − 2.92i)9-s + (0.492 + 1.32i)10-s + (−1.40 − 2.44i)11-s + (2.62 + 2.26i)12-s + (2.89 − 5.01i)13-s + (−5.36 − 0.909i)14-s + (1.71 − 0.256i)15-s + (−3.72 + 1.46i)16-s + 2.42i·17-s + ⋯ |
L(s) = 1 | + (0.770 + 0.637i)2-s + (0.782 − 0.622i)3-s + (0.186 + 0.982i)4-s + (0.387 + 0.223i)5-s + (0.999 + 0.0193i)6-s + (−1.25 + 0.727i)7-s + (−0.482 + 0.875i)8-s + (0.224 − 0.974i)9-s + (0.155 + 0.419i)10-s + (−0.424 − 0.736i)11-s + (0.757 + 0.652i)12-s + (0.803 − 1.39i)13-s + (−1.43 − 0.242i)14-s + (0.442 − 0.0661i)15-s + (−0.930 + 0.366i)16-s + 0.588i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.790 - 0.612i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.790 - 0.612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87888 + 0.642967i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87888 + 0.642967i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.08 - 0.901i)T \) |
| 3 | \( 1 + (-1.35 + 1.07i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
good | 7 | \( 1 + (3.33 - 1.92i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.40 + 2.44i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.89 + 5.01i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 2.42iT - 17T^{2} \) |
| 19 | \( 1 + 4.07iT - 19T^{2} \) |
| 23 | \( 1 + (2.17 - 3.76i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (6.07 - 3.50i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.94 - 1.12i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.29T + 37T^{2} \) |
| 41 | \( 1 + (-0.0948 - 0.0547i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.178 + 0.102i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.38 - 9.33i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 7.55iT - 53T^{2} \) |
| 59 | \( 1 + (-4.16 + 7.21i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.06 + 5.30i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.48 - 2.59i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.46T + 71T^{2} \) |
| 73 | \( 1 + 12.9T + 73T^{2} \) |
| 79 | \( 1 + (-4.32 + 2.49i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.85 - 6.68i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 0.134iT - 89T^{2} \) |
| 97 | \( 1 + (-6.49 - 11.2i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.15341387010187504838242411220, −12.35358548980942670389793781753, −10.94390716073905727167777984570, −9.418393330402899814532253426402, −8.519419357719347093232542519125, −7.52004881504634829772273416559, −6.25842351288594657943902818371, −5.71494792131493667477696257428, −3.48514170413834105018512543571, −2.76209659592867522295161165518,
2.17958966291193537124086341469, 3.66223747348209957498230313156, 4.45812603562519937326494647715, 6.01428231130464756466266786669, 7.20319960110983224540878470606, 8.958476543518520715400647888592, 9.860859845518024845486860801010, 10.30336307713309906224764240123, 11.62528890485667078076973382771, 12.88307210462866962988904100599