L(s) = 1 | + (1.04 + 0.957i)2-s + (0.561 − 1.63i)3-s + (0.165 + 1.99i)4-s + (0.866 − 0.5i)5-s + (2.15 − 1.16i)6-s + (0.811 + 0.468i)7-s + (−1.73 + 2.23i)8-s + (−2.36 − 1.84i)9-s + (1.37 + 0.309i)10-s + (0.291 − 0.505i)11-s + (3.35 + 0.849i)12-s + (−0.579 − 1.00i)13-s + (0.395 + 1.26i)14-s + (−0.332 − 1.69i)15-s + (−3.94 + 0.658i)16-s + 0.238i·17-s + ⋯ |
L(s) = 1 | + (0.735 + 0.677i)2-s + (0.324 − 0.945i)3-s + (0.0826 + 0.996i)4-s + (0.387 − 0.223i)5-s + (0.879 − 0.476i)6-s + (0.306 + 0.177i)7-s + (−0.614 + 0.789i)8-s + (−0.789 − 0.613i)9-s + (0.436 + 0.0977i)10-s + (0.0880 − 0.152i)11-s + (0.969 + 0.245i)12-s + (−0.160 − 0.278i)13-s + (0.105 + 0.338i)14-s + (−0.0858 − 0.438i)15-s + (−0.986 + 0.164i)16-s + 0.0577i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.83014 + 0.271504i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83014 + 0.271504i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.04 - 0.957i)T \) |
| 3 | \( 1 + (-0.561 + 1.63i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
good | 7 | \( 1 + (-0.811 - 0.468i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.291 + 0.505i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.579 + 1.00i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 0.238iT - 17T^{2} \) |
| 19 | \( 1 - 7.00iT - 19T^{2} \) |
| 23 | \( 1 + (2.53 + 4.38i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (7.91 + 4.57i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.43 - 3.13i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.50T + 37T^{2} \) |
| 41 | \( 1 + (-2.86 + 1.65i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-9.35 - 5.39i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.27 + 7.40i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 11.9iT - 53T^{2} \) |
| 59 | \( 1 + (4.94 + 8.56i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.33 - 5.77i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.69 + 4.44i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.95T + 71T^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 + (-4.37 - 2.52i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.36 - 4.09i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.36iT - 89T^{2} \) |
| 97 | \( 1 + (2.26 - 3.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.67419362305525309044423096176, −12.30661839512586628862051738083, −11.06700514593571929798044088269, −9.357335801396874675865945879584, −8.244373578328888215240070069776, −7.56386647312631414444170362082, −6.25738046928056749577051238204, −5.51908010161870928840260743885, −3.82075132286162402348399742432, −2.20017881679341014963979225303,
2.28442375608842967423958286124, 3.67153297163463443843355509034, 4.79176702022117076995945201824, 5.80425565969095219567613339755, 7.35302926449921187601364133777, 9.163785300870838938482806835477, 9.630099035331298282247358263627, 10.98219187072219501341365537716, 11.23047719002118016937050469790, 12.72187601787970203663197536169