L(s) = 1 | + (0.752 − 1.19i)2-s + (1.67 − 0.425i)3-s + (−0.866 − 1.80i)4-s + (−0.866 + 0.5i)5-s + (0.755 − 2.33i)6-s + (1.87 + 1.08i)7-s + (−2.81 − 0.320i)8-s + (2.63 − 1.42i)9-s + (−0.0535 + 1.41i)10-s + (−1.44 + 2.50i)11-s + (−2.22 − 2.65i)12-s + (−3.30 − 5.72i)13-s + (2.70 − 1.42i)14-s + (−1.24 + 1.20i)15-s + (−2.49 + 3.12i)16-s + 5.08i·17-s + ⋯ |
L(s) = 1 | + (0.532 − 0.846i)2-s + (0.969 − 0.245i)3-s + (−0.433 − 0.901i)4-s + (−0.387 + 0.223i)5-s + (0.308 − 0.951i)6-s + (0.708 + 0.409i)7-s + (−0.993 − 0.113i)8-s + (0.879 − 0.475i)9-s + (−0.0169 + 0.446i)10-s + (−0.436 + 0.755i)11-s + (−0.641 − 0.767i)12-s + (−0.916 − 1.58i)13-s + (0.723 − 0.381i)14-s + (−0.320 + 0.311i)15-s + (−0.624 + 0.780i)16-s + 1.23i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.243 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.243 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42348 - 1.11063i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42348 - 1.11063i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.752 + 1.19i)T \) |
| 3 | \( 1 + (-1.67 + 0.425i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
good | 7 | \( 1 + (-1.87 - 1.08i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.44 - 2.50i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.30 + 5.72i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 5.08iT - 17T^{2} \) |
| 19 | \( 1 - 4.66iT - 19T^{2} \) |
| 23 | \( 1 + (-1.44 - 2.50i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.99 + 3.46i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.51 + 2.60i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4.58T + 37T^{2} \) |
| 41 | \( 1 + (4.18 - 2.41i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.81 - 2.20i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.00969 - 0.0167i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 3.21iT - 53T^{2} \) |
| 59 | \( 1 + (4.02 + 6.97i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.321 - 0.556i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.19 - 4.73i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.17T + 71T^{2} \) |
| 73 | \( 1 - 2.32T + 73T^{2} \) |
| 79 | \( 1 + (14.6 + 8.48i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.950 + 1.64i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 3.72iT - 89T^{2} \) |
| 97 | \( 1 + (-5.78 + 10.0i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65192595340686111262867492262, −11.67574575433891449904973781929, −10.38535950771150522579629283561, −9.749539418340600072930702462201, −8.298436012619391685490565016237, −7.61395088298345181250754105551, −5.79832707952199609073355936910, −4.47073597554836566044287003588, −3.17944146564426709987227164451, −1.93979713922192339796203168197,
2.78620197085746732649320533917, 4.31417476776804827226404136156, 4.98090733623186572101031866504, 6.96149150441483469378453181533, 7.59560361710766594861269358482, 8.725233813870465318588713002514, 9.375197385639189151718324851308, 11.06081151965261103825412505874, 12.05800969581971241167533115114, 13.31177295686094388358789230779