L(s) = 1 | + (0.0785 − 1.41i)2-s + (0.427 + 1.67i)3-s + (−1.98 − 0.221i)4-s + (0.866 − 0.5i)5-s + (2.40 − 0.472i)6-s + (4.06 + 2.34i)7-s + (−0.469 + 2.78i)8-s + (−2.63 + 1.43i)9-s + (−0.638 − 1.26i)10-s + (1.34 − 2.32i)11-s + (−0.477 − 3.43i)12-s + (−1.04 − 1.80i)13-s + (3.63 − 5.56i)14-s + (1.20 + 1.23i)15-s + (3.90 + 0.881i)16-s − 3.78i·17-s + ⋯ |
L(s) = 1 | + (0.0555 − 0.998i)2-s + (0.246 + 0.969i)3-s + (−0.993 − 0.110i)4-s + (0.387 − 0.223i)5-s + (0.981 − 0.192i)6-s + (1.53 + 0.888i)7-s + (−0.165 + 0.986i)8-s + (−0.878 + 0.478i)9-s + (−0.201 − 0.399i)10-s + (0.404 − 0.701i)11-s + (−0.137 − 0.990i)12-s + (−0.289 − 0.501i)13-s + (0.972 − 1.48i)14-s + (0.312 + 0.320i)15-s + (0.975 + 0.220i)16-s − 0.918i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 + 0.305i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 + 0.305i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32721 - 0.207518i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32721 - 0.207518i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0785 + 1.41i)T \) |
| 3 | \( 1 + (-0.427 - 1.67i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
good | 7 | \( 1 + (-4.06 - 2.34i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.34 + 2.32i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.04 + 1.80i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3.78iT - 17T^{2} \) |
| 19 | \( 1 - 3.78iT - 19T^{2} \) |
| 23 | \( 1 + (0.163 + 0.282i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.75 + 1.01i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (7.70 - 4.44i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.76T + 37T^{2} \) |
| 41 | \( 1 + (2.34 - 1.35i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.18 + 3.57i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.465 + 0.805i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.41iT - 53T^{2} \) |
| 59 | \( 1 + (-1.58 - 2.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.65 + 11.5i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.62 + 2.66i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 14.2T + 71T^{2} \) |
| 73 | \( 1 - 13.7T + 73T^{2} \) |
| 79 | \( 1 + (-7.94 - 4.58i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.11 + 5.39i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 5.99iT - 89T^{2} \) |
| 97 | \( 1 + (-0.0157 + 0.0272i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29284716012193612927605000332, −11.48648490466079465531982024706, −10.76137872464994353927057278239, −9.678616494770182649584723273403, −8.778121975529569599811892733083, −8.133916511601063114116337791400, −5.47440670928471031301797128844, −5.01160214913301973457873465591, −3.51004352906008492036537459428, −2.02424849648677322028985117770,
1.67440748926646656339123129599, 4.09963294106933335604578654631, 5.36327718726314375377914080548, 6.76849670121717508699959683219, 7.39033941822783130443999292421, 8.312549968583758930419617129137, 9.344393677937618361675799472140, 10.76824531191860793466506243566, 11.91231339889024848752625186390, 13.08841691445465552441754001476