L(s) = 1 | + (−1.39 − 0.228i)2-s + (−1.60 − 0.654i)3-s + (1.89 + 0.638i)4-s + (−0.866 + 0.5i)5-s + (2.08 + 1.27i)6-s + (−1.04 − 0.604i)7-s + (−2.49 − 1.32i)8-s + (2.14 + 2.09i)9-s + (1.32 − 0.499i)10-s + (−1.52 + 2.63i)11-s + (−2.62 − 2.26i)12-s + (2.53 + 4.39i)13-s + (1.32 + 1.08i)14-s + (1.71 − 0.235i)15-s + (3.18 + 2.42i)16-s + 2.23i·17-s + ⋯ |
L(s) = 1 | + (−0.986 − 0.161i)2-s + (−0.925 − 0.377i)3-s + (0.947 + 0.319i)4-s + (−0.387 + 0.223i)5-s + (0.852 + 0.522i)6-s + (−0.395 − 0.228i)7-s + (−0.883 − 0.468i)8-s + (0.714 + 0.699i)9-s + (0.418 − 0.157i)10-s + (−0.458 + 0.794i)11-s + (−0.756 − 0.653i)12-s + (0.704 + 1.21i)13-s + (0.353 + 0.289i)14-s + (0.443 − 0.0608i)15-s + (0.795 + 0.605i)16-s + 0.543i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.224 - 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.224 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.301995 + 0.240210i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.301995 + 0.240210i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.228i)T \) |
| 3 | \( 1 + (1.60 + 0.654i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
good | 7 | \( 1 + (1.04 + 0.604i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.52 - 2.63i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.53 - 4.39i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2.23iT - 17T^{2} \) |
| 19 | \( 1 - 2.53iT - 19T^{2} \) |
| 23 | \( 1 + (-3.48 - 6.02i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.84 + 2.79i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.83 - 1.63i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.3T + 37T^{2} \) |
| 41 | \( 1 + (-3.70 + 2.13i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.74 - 2.15i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.15 + 8.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 9.42iT - 53T^{2} \) |
| 59 | \( 1 + (-4.46 - 7.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.32 + 2.30i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.4 - 7.20i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.49T + 71T^{2} \) |
| 73 | \( 1 - 5.10T + 73T^{2} \) |
| 79 | \( 1 + (-3.26 - 1.88i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.286 + 0.495i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.40iT - 89T^{2} \) |
| 97 | \( 1 + (-5.82 + 10.0i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50214303175188027828450481287, −11.70726285699456252218819067027, −10.87702099819686785886311634118, −10.07269147693200120013180069629, −8.919680677705595333888451773125, −7.50255672200843889076305292117, −6.94574757925027966391357398538, −5.74604030176034470355456075952, −3.87148168869610616094147303425, −1.74503619233606634857297064431,
0.54033191219750227748699871000, 3.20991824610853693482296168164, 5.20464624274609006513217368240, 6.13658774451167953309953221170, 7.30155886090526771118953639096, 8.530632240170701825879189233480, 9.418843570871049524177465600919, 10.76379229341776936453489688800, 10.95736423411843730372240756436, 12.23619311099343082907879183300