L(s) = 1 | + (−0.937 + 1.05i)2-s + (−0.959 − 1.44i)3-s + (−0.242 − 1.98i)4-s + (−1.62 + 1.53i)5-s + (2.42 + 0.335i)6-s + (0.550 + 0.953i)7-s + (2.32 + 1.60i)8-s + (−1.15 + 2.76i)9-s + (−0.106 − 3.16i)10-s + (2.84 + 4.92i)11-s + (−2.62 + 2.25i)12-s + (2.07 + 1.19i)13-s + (−1.52 − 0.310i)14-s + (3.77 + 0.864i)15-s + (−3.88 + 0.963i)16-s − 1.29·17-s + ⋯ |
L(s) = 1 | + (−0.662 + 0.748i)2-s + (−0.554 − 0.832i)3-s + (−0.121 − 0.992i)4-s + (−0.725 + 0.687i)5-s + (0.990 + 0.136i)6-s + (0.208 + 0.360i)7-s + (0.823 + 0.567i)8-s + (−0.385 + 0.922i)9-s + (−0.0337 − 0.999i)10-s + (0.856 + 1.48i)11-s + (−0.759 + 0.651i)12-s + (0.575 + 0.332i)13-s + (−0.407 − 0.0830i)14-s + (0.974 + 0.223i)15-s + (−0.970 + 0.240i)16-s − 0.313·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.134 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.134 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.369268 + 0.422729i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.369268 + 0.422729i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.937 - 1.05i)T \) |
| 3 | \( 1 + (0.959 + 1.44i)T \) |
| 5 | \( 1 + (1.62 - 1.53i)T \) |
good | 7 | \( 1 + (-0.550 - 0.953i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.84 - 4.92i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.07 - 1.19i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.29T + 17T^{2} \) |
| 19 | \( 1 - 2.78iT - 19T^{2} \) |
| 23 | \( 1 + (1.82 + 1.05i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.51 - 3.18i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.78 + 1.60i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.51iT - 37T^{2} \) |
| 41 | \( 1 + (-6.35 - 3.66i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.25 - 3.90i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-8.09 + 4.67i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 11.5T + 53T^{2} \) |
| 59 | \( 1 + (-3.66 + 6.34i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.48 - 4.31i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.85 + 3.20i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.6T + 71T^{2} \) |
| 73 | \( 1 - 9.86iT - 73T^{2} \) |
| 79 | \( 1 + (-0.975 + 0.563i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (9.98 - 5.76i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 9.16iT - 89T^{2} \) |
| 97 | \( 1 + (-11.1 + 6.42i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81701808726772404494098866113, −11.76094597055368052161037550729, −11.05771154138261029761402017845, −9.897749896630085445872916699499, −8.615178190051327080216184570733, −7.55314671465298273332149839707, −6.87999160174482884131794889501, −5.94481097110200984688991436411, −4.41691809983620885526994138106, −1.83582070134672532771372003979,
0.71949135177582918393029392960, 3.52641069955107743623448972632, 4.27228134113748501529547769373, 5.85797111591006112098886185638, 7.54209809732547756402059296883, 8.809242436225438925120892039576, 9.208750045002700673613344282173, 10.78259174531008172035975639234, 11.16819156474263256066955719577, 11.98484979721057761017041682917