L(s) = 1 | + (0.356 + 1.36i)2-s + (1.30 − 1.14i)3-s + (−1.74 + 0.974i)4-s + (−0.493 + 2.18i)5-s + (2.02 + 1.37i)6-s + (1.65 + 2.87i)7-s + (−1.95 − 2.04i)8-s + (0.391 − 2.97i)9-s + (−3.16 + 0.100i)10-s + (−1.17 − 2.04i)11-s + (−1.16 + 3.26i)12-s + (3.81 + 2.20i)13-s + (−3.33 + 3.29i)14-s + (1.84 + 3.40i)15-s + (2.10 − 3.40i)16-s + 0.889·17-s + ⋯ |
L(s) = 1 | + (0.251 + 0.967i)2-s + (0.751 − 0.659i)3-s + (−0.873 + 0.487i)4-s + (−0.220 + 0.975i)5-s + (0.827 + 0.561i)6-s + (0.626 + 1.08i)7-s + (−0.691 − 0.722i)8-s + (0.130 − 0.991i)9-s + (−0.999 + 0.0318i)10-s + (−0.355 − 0.615i)11-s + (−0.335 + 0.942i)12-s + (1.05 + 0.610i)13-s + (−0.892 + 0.879i)14-s + (0.477 + 0.878i)15-s + (0.525 − 0.851i)16-s + 0.215·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.192 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.192 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15829 + 0.953410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15829 + 0.953410i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.356 - 1.36i)T \) |
| 3 | \( 1 + (-1.30 + 1.14i)T \) |
| 5 | \( 1 + (0.493 - 2.18i)T \) |
good | 7 | \( 1 + (-1.65 - 2.87i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.17 + 2.04i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.81 - 2.20i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 0.889T + 17T^{2} \) |
| 19 | \( 1 + 3.03iT - 19T^{2} \) |
| 23 | \( 1 + (6.29 + 3.63i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.03 + 0.598i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.205 + 0.118i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 11.4iT - 37T^{2} \) |
| 41 | \( 1 + (-2.45 - 1.41i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.17 - 7.23i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.55 - 3.78i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 0.772T + 53T^{2} \) |
| 59 | \( 1 + (1.06 - 1.84i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.91 - 3.31i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.17 + 5.49i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.7T + 71T^{2} \) |
| 73 | \( 1 - 6.10iT - 73T^{2} \) |
| 79 | \( 1 + (8.94 - 5.16i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.25 - 1.29i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 4.68iT - 89T^{2} \) |
| 97 | \( 1 + (5.34 - 3.08i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14925080222332933701415773626, −12.10579311585444557255529138213, −11.10961997273289834241015005696, −9.412291004496386082445797228766, −8.452823012643949151444870893606, −7.82917606805805212771433103300, −6.59198073989081554246979272365, −5.82165438374225184768861089476, −3.96775606933829012877886786784, −2.59204150829525482254145881153,
1.57966932763302807437229963216, 3.59503330283491555798765291809, 4.38177638218836849193499388264, 5.43226213486669071093595858883, 7.87930249734505062732541832824, 8.430746903947806395011808394767, 9.742198719401689326117867340833, 10.35802934563283401841403870395, 11.36641031082091174486341788025, 12.51308890924970456964399834263