| L(s) = 1 | + (−0.0443 − 1.41i)2-s + (−1.66 − 0.461i)3-s + (−1.99 + 0.125i)4-s + (−2.11 + 0.734i)5-s + (−0.578 + 2.38i)6-s + (0.667 − 1.15i)7-s + (0.265 + 2.81i)8-s + (2.57 + 1.54i)9-s + (1.13 + 2.95i)10-s + (−2.18 + 3.78i)11-s + (3.39 + 0.711i)12-s + (−3.56 + 2.05i)13-s + (−1.66 − 0.892i)14-s + (3.86 − 0.252i)15-s + (3.96 − 0.500i)16-s − 6.45·17-s + ⋯ |
| L(s) = 1 | + (−0.0313 − 0.999i)2-s + (−0.963 − 0.266i)3-s + (−0.998 + 0.0626i)4-s + (−0.944 + 0.328i)5-s + (−0.236 + 0.971i)6-s + (0.252 − 0.436i)7-s + (0.0939 + 0.995i)8-s + (0.858 + 0.513i)9-s + (0.358 + 0.933i)10-s + (−0.659 + 1.14i)11-s + (0.978 + 0.205i)12-s + (−0.987 + 0.570i)13-s + (−0.444 − 0.238i)14-s + (0.997 − 0.0651i)15-s + (0.992 − 0.125i)16-s − 1.56·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.205 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.205 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0346498 + 0.0426976i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0346498 + 0.0426976i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.0443 + 1.41i)T \) |
| 3 | \( 1 + (1.66 + 0.461i)T \) |
| 5 | \( 1 + (2.11 - 0.734i)T \) |
| good | 7 | \( 1 + (-0.667 + 1.15i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.18 - 3.78i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.56 - 2.05i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.45T + 17T^{2} \) |
| 19 | \( 1 + 5.84iT - 19T^{2} \) |
| 23 | \( 1 + (-0.0875 + 0.0505i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.53 + 2.61i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.18 - 2.41i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.24iT - 37T^{2} \) |
| 41 | \( 1 + (-3.50 + 2.02i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.92 - 3.33i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.00 + 1.73i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2.77T + 53T^{2} \) |
| 59 | \( 1 + (-1.37 - 2.37i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.04 + 1.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.216 + 0.374i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.41T + 71T^{2} \) |
| 73 | \( 1 + 7.28iT - 73T^{2} \) |
| 79 | \( 1 + (2.58 + 1.49i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-11.6 - 6.70i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.97iT - 89T^{2} \) |
| 97 | \( 1 + (2.08 + 1.20i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.69690727787367939501468991949, −11.76606585837248302076539775918, −11.12678013084396926645159088056, −10.38279466907877585921458775329, −9.203400432837426726730799284782, −7.64710538252253795534658260454, −6.92122106154157476918536112198, −4.87838596590026381417743065153, −4.33901914675347659085105222331, −2.27525139489465981595606831336,
0.05513938663084831715349839945, 3.86001459379990916867508444987, 5.06463163338252701401804190149, 5.82737174800176099058770190857, 7.18650566512226073256675453126, 8.135775213428610269126438624860, 9.132820249872200381992905104882, 10.46307453378364119808849848710, 11.40562627390839491085390595554, 12.48829747647636173566765249700