L(s) = 1 | + (−0.0700 − 1.41i)2-s + (0.424 + 1.67i)3-s + (−1.99 + 0.197i)4-s + (−0.0966 + 2.23i)5-s + (2.34 − 0.717i)6-s + (−1.60 + 2.78i)7-s + (0.419 + 2.79i)8-s + (−2.63 + 1.42i)9-s + (3.16 − 0.0199i)10-s + (1.56 − 2.70i)11-s + (−1.17 − 3.25i)12-s + (−1.59 + 0.923i)13-s + (4.04 + 2.07i)14-s + (−3.79 + 0.786i)15-s + (3.92 − 0.787i)16-s + 5.85·17-s + ⋯ |
L(s) = 1 | + (−0.0495 − 0.998i)2-s + (0.245 + 0.969i)3-s + (−0.995 + 0.0989i)4-s + (−0.0432 + 0.999i)5-s + (0.956 − 0.292i)6-s + (−0.608 + 1.05i)7-s + (0.148 + 0.988i)8-s + (−0.879 + 0.475i)9-s + (0.999 − 0.00632i)10-s + (0.471 − 0.816i)11-s + (−0.340 − 0.940i)12-s + (−0.443 + 0.256i)13-s + (1.08 + 0.555i)14-s + (−0.979 + 0.203i)15-s + (0.980 − 0.196i)16-s + 1.41·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.890061 + 0.430240i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.890061 + 0.430240i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0700 + 1.41i)T \) |
| 3 | \( 1 + (-0.424 - 1.67i)T \) |
| 5 | \( 1 + (0.0966 - 2.23i)T \) |
good | 7 | \( 1 + (1.60 - 2.78i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.56 + 2.70i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.59 - 0.923i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.85T + 17T^{2} \) |
| 19 | \( 1 + 2.24iT - 19T^{2} \) |
| 23 | \( 1 + (-3.24 + 1.87i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.90 - 3.98i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.03 + 0.599i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2.66iT - 37T^{2} \) |
| 41 | \( 1 + (0.208 - 0.120i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.66 - 4.61i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.96 - 2.28i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 13.0T + 53T^{2} \) |
| 59 | \( 1 + (3.47 + 6.01i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.66 + 2.88i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.31 - 7.48i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 + 13.1iT - 73T^{2} \) |
| 79 | \( 1 + (-11.6 - 6.72i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.07 - 0.623i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + (-5.75 - 3.32i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51073346723156566403619963506, −11.62301795336972138266111073257, −10.81417444336870336661010735462, −9.864531207072044039233615035948, −9.182087596417868520191736126588, −8.138388009120301969275356883529, −6.24163714433090166859231037898, −4.99028765975686830651279192761, −3.37875683707306593647360813848, −2.77889777615717935926769741615,
0.984761509360173334627042255068, 3.74604162115929705441006186543, 5.15941763533285576303376191074, 6.43063385006023936556039552609, 7.42018741068771959917691222986, 8.082655463294107452153075177713, 9.317958937080752690824035546728, 10.09713355573218049171198805694, 12.15106590914341042040670894878, 12.63340654933019372855398705689