L(s) = 1 | + (−4.08 − 7.07i)5-s + (18.9 − 32.7i)11-s − 39.9·13-s + (−4.96 + 8.60i)17-s + (−45.2 − 78.3i)19-s + (59.2 + 102. i)23-s + (29.1 − 50.4i)25-s + 78.4·29-s + (46.0 − 79.6i)31-s + (−166. − 287. i)37-s + 71.7·41-s − 115.·43-s + (−153. − 266. i)47-s + (−201. + 349. i)53-s − 308.·55-s + ⋯ |
L(s) = 1 | + (−0.365 − 0.632i)5-s + (0.518 − 0.897i)11-s − 0.851·13-s + (−0.0708 + 0.122i)17-s + (−0.546 − 0.945i)19-s + (0.537 + 0.931i)23-s + (0.233 − 0.403i)25-s + 0.502·29-s + (0.266 − 0.461i)31-s + (−0.738 − 1.27i)37-s + 0.273·41-s − 0.411·43-s + (−0.477 − 0.827i)47-s + (−0.522 + 0.904i)53-s − 0.757·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4175162608\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4175162608\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (4.08 + 7.07i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-18.9 + 32.7i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 39.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + (4.96 - 8.60i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (45.2 + 78.3i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-59.2 - 102. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 78.4T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-46.0 + 79.6i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (166. + 287. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 71.7T + 6.89e4T^{2} \) |
| 43 | \( 1 + 115.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (153. + 266. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (201. - 349. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (296. - 514. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-166. - 288. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-371. + 643. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 728.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (400. - 694. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (533. + 924. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 906.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (556. + 964. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.48e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.675607040162354789796154967604, −7.72200504263288516589015439728, −6.94840480551450337964268766517, −6.05535336772593491245177106765, −5.11344550285040177635984154066, −4.39417523843662081696661012433, −3.43149783214381359623786056950, −2.36775362887888247253353173848, −1.03947452980684761663588531216, −0.098021926270086367758345633106,
1.45863755029840856193735974967, 2.55252143697136128192107558559, 3.47730550322206580368180519381, 4.49103942773578246700163574319, 5.17173111108221024168857169028, 6.61467487745660961853910144136, 6.77058590407135457433880931944, 7.81328889464310844504058064363, 8.487479136699608680203578592767, 9.544876659005787121579952934273