L(s) = 1 | + (−9 + 15.5i)5-s + (18 + 31.1i)11-s − 10·13-s + (9 + 15.5i)17-s + (50 − 86.6i)19-s + (36 − 62.3i)23-s + (−99.5 − 172. i)25-s + 234·29-s + (8 + 13.8i)31-s + (113 − 195. i)37-s − 90·41-s + 452·43-s + (216 − 374. i)47-s + (207 + 358. i)53-s − 648·55-s + ⋯ |
L(s) = 1 | + (−0.804 + 1.39i)5-s + (0.493 + 0.854i)11-s − 0.213·13-s + (0.128 + 0.222i)17-s + (0.603 − 1.04i)19-s + (0.326 − 0.565i)23-s + (−0.796 − 1.37i)25-s + 1.49·29-s + (0.0463 + 0.0802i)31-s + (0.502 − 0.869i)37-s − 0.342·41-s + 1.60·43-s + (0.670 − 1.16i)47-s + (0.536 + 0.929i)53-s − 1.58·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.926060383\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.926060383\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (9 - 15.5i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-18 - 31.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 10T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-9 - 15.5i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-50 + 86.6i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-36 + 62.3i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 234T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-8 - 13.8i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-113 + 195. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 90T + 6.89e4T^{2} \) |
| 43 | \( 1 - 452T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-216 + 374. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-207 - 358. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (342 + 592. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (211 - 365. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (166 + 287. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 360T + 3.57e5T^{2} \) |
| 73 | \( 1 + (13 + 22.5i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (256 - 443. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 1.18e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (315 - 545. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.05e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.100784485014251507452589711836, −8.119459920017407908967206283015, −7.20882021205489491860324162914, −6.96250339490282058935629204592, −6.03717887113895855828917687679, −4.77525633506588173175191203784, −4.02541703105511403385011242021, −3.03543768132552600439369260383, −2.31339744177336011169806873656, −0.71064849591796694813613207809,
0.69265111181377149649628938626, 1.32217538116967543484388056472, 2.96498771879852714710953592301, 3.91211950701074166263813684002, 4.65806581260244341721092494583, 5.48842906634384018100220404469, 6.30860509886872680089613247630, 7.52798203144024547504946464917, 8.056093602934370311458087087411, 8.810075573587609535778008108965