L(s) = 1 | + (4.46 − 2.57i)5-s + (−5.25 − 3.03i)11-s − 12.5·13-s + (−14.9 − 8.64i)17-s + (12.9 + 22.4i)19-s + (−2.09 + 1.20i)23-s + (0.791 − 1.37i)25-s + 55.8i·29-s + (−7.64 + 13.2i)31-s + (11.8 + 20.5i)37-s + 15.4i·41-s + 27.7·43-s + (24.6 − 14.2i)47-s + (40.4 + 23.3i)53-s − 31.2·55-s + ⋯ |
L(s) = 1 | + (0.893 − 0.515i)5-s + (−0.477 − 0.275i)11-s − 0.967·13-s + (−0.881 − 0.508i)17-s + (0.680 + 1.17i)19-s + (−0.0909 + 0.0525i)23-s + (0.0316 − 0.0548i)25-s + 1.92i·29-s + (−0.246 + 0.427i)31-s + (0.320 + 0.555i)37-s + 0.377i·41-s + 0.645·43-s + (0.524 − 0.302i)47-s + (0.762 + 0.440i)53-s − 0.568·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.300 - 0.953i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.300 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.577584014\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.577584014\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-4.46 + 2.57i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (5.25 + 3.03i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 12.5T + 169T^{2} \) |
| 17 | \( 1 + (14.9 + 8.64i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-12.9 - 22.4i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (2.09 - 1.20i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 - 55.8iT - 841T^{2} \) |
| 31 | \( 1 + (7.64 - 13.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-11.8 - 20.5i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 15.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 27.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-24.6 + 14.2i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-40.4 - 23.3i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-69.8 - 40.3i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-31.3 - 54.3i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (58.0 - 100. i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 49.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (15.3 - 26.5i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (71.3 + 123. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 28.5iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-145. + 84.1i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 113.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.166137761153686302930992036884, −8.728340245327749987985794249329, −7.60165924463382331363380633342, −6.98612881852569520886452595831, −5.82570809632933033344853962578, −5.32162988857529341160763664227, −4.49038741722839094133047330702, −3.21094266030583486616853868151, −2.22604554468090849327252772418, −1.16532087642535368744021798228,
0.41588606050581486574746672629, 2.23870632122980220889183087931, 2.50183726902091956643184978653, 3.98531107234605466333849998628, 4.91970799743965439449150806480, 5.76447807987978255204504988328, 6.55625488493050735250358279056, 7.31149975755821059466116860168, 8.081048331740358749759549394281, 9.200638922804296236917128109300