L(s) = 1 | + (0.647 + 1.60i)3-s + (0.349 − 0.605i)5-s + (−2.16 + 2.08i)9-s + (−0.229 + 0.132i)11-s + (1.13 + 0.657i)13-s + (1.19 + 0.169i)15-s + 3.72·17-s + 0.441i·19-s + (4.29 + 2.48i)23-s + (2.25 + 3.90i)25-s + (−4.74 − 2.12i)27-s + (−0.273 + 0.157i)29-s + (−4.85 − 2.80i)31-s + (−0.361 − 0.283i)33-s + 0.702·37-s + ⋯ |
L(s) = 1 | + (0.373 + 0.927i)3-s + (0.156 − 0.270i)5-s + (−0.720 + 0.693i)9-s + (−0.0692 + 0.0399i)11-s + (0.315 + 0.182i)13-s + (0.309 + 0.0437i)15-s + 0.904·17-s + 0.101i·19-s + (0.896 + 0.517i)23-s + (0.451 + 0.781i)25-s + (−0.912 − 0.408i)27-s + (−0.0507 + 0.0292i)29-s + (−0.872 − 0.503i)31-s + (−0.0629 − 0.0492i)33-s + 0.115·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0837 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0837 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.897417028\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.897417028\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.647 - 1.60i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.349 + 0.605i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.229 - 0.132i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.13 - 0.657i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3.72T + 17T^{2} \) |
| 19 | \( 1 - 0.441iT - 19T^{2} \) |
| 23 | \( 1 + (-4.29 - 2.48i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.273 - 0.157i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.85 + 2.80i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.702T + 37T^{2} \) |
| 41 | \( 1 + (5.39 - 9.34i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.73 - 6.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.50 - 6.06i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.83iT - 53T^{2} \) |
| 59 | \( 1 + (-6.73 + 11.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.89 - 2.82i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.97 + 5.14i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.4iT - 71T^{2} \) |
| 73 | \( 1 + 7.69iT - 73T^{2} \) |
| 79 | \( 1 + (0.698 + 1.20i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.72 + 6.45i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 11.1T + 89T^{2} \) |
| 97 | \( 1 + (9.18 - 5.30i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.464737764981459080383891227810, −8.915320611262176736939607054358, −8.027619308077831782124040199563, −7.32491972528540534604843634808, −6.08556012244687660830711283967, −5.32845372811390673339299582863, −4.58035280033828394073622748135, −3.58450750771166909975421801581, −2.82753447649261733988519144999, −1.39505939935566666834912265659,
0.72189149833520894356842133872, 1.99266543294992970144531562181, 2.96310092350404563616786529132, 3.81286560931759841157322326358, 5.23185878592378959013833382206, 5.92857164705025927126202044749, 6.96575385769647438164907364595, 7.28438786061439473195383424070, 8.478916895057997200650400069350, 8.739079025512980980592609190748