L(s) = 1 | + (1.22 − 0.707i)2-s + (0.999 − 1.73i)4-s − 2.82i·5-s − 2.82i·8-s + (−2.00 − 3.46i)10-s − 5.65i·11-s + 5.19i·13-s + (−2.00 − 3.46i)16-s − 2.82i·17-s − 5·19-s + (−4.89 − 2.82i)20-s + (−4.00 − 6.92i)22-s + 2.82i·23-s − 3.00·25-s + (3.67 + 6.36i)26-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)2-s + (0.499 − 0.866i)4-s − 1.26i·5-s − 0.999i·8-s + (−0.632 − 1.09i)10-s − 1.70i·11-s + 1.44i·13-s + (−0.500 − 0.866i)16-s − 0.685i·17-s − 1.14·19-s + (−1.09 − 0.632i)20-s + (−0.852 − 1.47i)22-s + 0.589i·23-s − 0.600·25-s + (0.720 + 1.24i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.498710605\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.498710605\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 + 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2.82iT - 5T^{2} \) |
| 11 | \( 1 + 5.65iT - 11T^{2} \) |
| 13 | \( 1 - 5.19iT - 13T^{2} \) |
| 17 | \( 1 + 2.82iT - 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - T + 31T^{2} \) |
| 37 | \( 1 - 5T + 37T^{2} \) |
| 41 | \( 1 - 5.65iT - 41T^{2} \) |
| 43 | \( 1 + 5.19iT - 43T^{2} \) |
| 47 | \( 1 - 4.89T + 47T^{2} \) |
| 53 | \( 1 - 4.89T + 53T^{2} \) |
| 59 | \( 1 + 4.89T + 59T^{2} \) |
| 61 | \( 1 - 6.92iT - 61T^{2} \) |
| 67 | \( 1 + 8.66iT - 67T^{2} \) |
| 71 | \( 1 - 2.82iT - 71T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 1.73iT - 79T^{2} \) |
| 83 | \( 1 + 14.6T + 83T^{2} \) |
| 89 | \( 1 + 11.3iT - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.972936478397367090983615351884, −8.432222046197361990088234395253, −7.18569321772295993410276503781, −6.20852886570848871896425790395, −5.61850897855876204226254071666, −4.64066978945367483892715451175, −4.09986988919614786639420109537, −2.99346417852423039442607799818, −1.77458789953993893363670907177, −0.67024818240237012750038586797,
2.15517206375599919105648209805, 2.84500704331617011819116857711, 3.90848446089770691695777244188, 4.67111419823387410073788205638, 5.73914660609603875801311357219, 6.47169478361133191405892828482, 7.14032325061611360501246968241, 7.77209044044676253754550677111, 8.562798733159473732910819959442, 9.873592605453380239754435164569