Properties

Label 2-1760-8.5-c1-0-14
Degree $2$
Conductor $1760$
Sign $0.661 - 0.750i$
Analytic cond. $14.0536$
Root an. cond. $3.74882$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.324i·3-s + i·5-s + 2.45·7-s + 2.89·9-s + i·11-s + 5.71i·13-s + 0.324·15-s − 1.52·17-s − 3.45i·19-s − 0.797i·21-s + 5.50·23-s − 25-s − 1.91i·27-s + 7.02i·29-s − 3.73·31-s + ⋯
L(s)  = 1  − 0.187i·3-s + 0.447i·5-s + 0.929·7-s + 0.964·9-s + 0.301i·11-s + 1.58i·13-s + 0.0837·15-s − 0.369·17-s − 0.791i·19-s − 0.174i·21-s + 1.14·23-s − 0.200·25-s − 0.368i·27-s + 1.30i·29-s − 0.670·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.661 - 0.750i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.661 - 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1760\)    =    \(2^{5} \cdot 5 \cdot 11\)
Sign: $0.661 - 0.750i$
Analytic conductor: \(14.0536\)
Root analytic conductor: \(3.74882\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1760} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1760,\ (\ :1/2),\ 0.661 - 0.750i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.026484366\)
\(L(\frac12)\) \(\approx\) \(2.026484366\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - iT \)
11 \( 1 - iT \)
good3 \( 1 + 0.324iT - 3T^{2} \)
7 \( 1 - 2.45T + 7T^{2} \)
13 \( 1 - 5.71iT - 13T^{2} \)
17 \( 1 + 1.52T + 17T^{2} \)
19 \( 1 + 3.45iT - 19T^{2} \)
23 \( 1 - 5.50T + 23T^{2} \)
29 \( 1 - 7.02iT - 29T^{2} \)
31 \( 1 + 3.73T + 31T^{2} \)
37 \( 1 - 5.29iT - 37T^{2} \)
41 \( 1 + 5.86T + 41T^{2} \)
43 \( 1 + 2.69iT - 43T^{2} \)
47 \( 1 - 1.30T + 47T^{2} \)
53 \( 1 + 1.45iT - 53T^{2} \)
59 \( 1 - 6.53iT - 59T^{2} \)
61 \( 1 + 4.33iT - 61T^{2} \)
67 \( 1 + 0.782iT - 67T^{2} \)
71 \( 1 - 9.16T + 71T^{2} \)
73 \( 1 - 11.4T + 73T^{2} \)
79 \( 1 + 10.6T + 79T^{2} \)
83 \( 1 + 9.17iT - 83T^{2} \)
89 \( 1 - 17.1T + 89T^{2} \)
97 \( 1 - 4.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.267127820085861442553247731425, −8.754466617113363397546831004071, −7.65079953521708392927857225041, −6.93018576094559233835311830273, −6.59755875384478867475800666396, −5.05395681939418092800995091627, −4.61001430933277040289666656670, −3.55985951749071661612430956930, −2.19505015411815775710307342329, −1.40571636707014826678673610637, 0.842346239110800612713286353173, 1.97668667553322942607623766255, 3.33508599203642990439675951050, 4.28484026395001822398771298852, 5.11130901987704287234587959775, 5.74422969307403194398982679376, 6.91154962728391533017890608373, 7.85478427698503319196495475083, 8.216999732960689695864508761722, 9.217149709916056284614484399506

Graph of the $Z$-function along the critical line