L(s) = 1 | + i·2-s + (−0.707 + 0.707i)3-s − 4-s + (−0.414 + 0.414i)5-s + (−0.707 − 0.707i)6-s + (−3.41 − 3.41i)7-s − i·8-s − 1.00i·9-s + (−0.414 − 0.414i)10-s + (2.82 + 2.82i)11-s + (0.707 − 0.707i)12-s − 2.82·13-s + (3.41 − 3.41i)14-s − 0.585i·15-s + 16-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.408 + 0.408i)3-s − 0.5·4-s + (−0.185 + 0.185i)5-s + (−0.288 − 0.288i)6-s + (−1.29 − 1.29i)7-s − 0.353i·8-s − 0.333i·9-s + (−0.130 − 0.130i)10-s + (0.852 + 0.852i)11-s + (0.204 − 0.204i)12-s − 0.784·13-s + (0.912 − 0.912i)14-s − 0.151i·15-s + 0.250·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.122 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.122 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9088879749\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9088879749\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 5 | \( 1 + (0.414 - 0.414i)T - 5iT^{2} \) |
| 7 | \( 1 + (3.41 + 3.41i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.82 - 2.82i)T + 11iT^{2} \) |
| 13 | \( 1 + 2.82T + 13T^{2} \) |
| 19 | \( 1 + 6.82iT - 19T^{2} \) |
| 23 | \( 1 + (-2.24 - 2.24i)T + 23iT^{2} \) |
| 29 | \( 1 + (-0.414 + 0.414i)T - 29iT^{2} \) |
| 31 | \( 1 + (0.585 - 0.585i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.58 + 1.58i)T - 37iT^{2} \) |
| 41 | \( 1 + (-2.17 - 2.17i)T + 41iT^{2} \) |
| 43 | \( 1 + 1.65iT - 43T^{2} \) |
| 47 | \( 1 - 12.4T + 47T^{2} \) |
| 53 | \( 1 - 2.82iT - 53T^{2} \) |
| 59 | \( 1 - 12.4iT - 59T^{2} \) |
| 61 | \( 1 + (0.757 + 0.757i)T + 61iT^{2} \) |
| 67 | \( 1 - 1.17T + 67T^{2} \) |
| 71 | \( 1 + (4.58 - 4.58i)T - 71iT^{2} \) |
| 73 | \( 1 + (6.65 - 6.65i)T - 73iT^{2} \) |
| 79 | \( 1 + (-10.2 - 10.2i)T + 79iT^{2} \) |
| 83 | \( 1 - 4.48iT - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (-9.48 + 9.48i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.392120719809480762591145916761, −9.086178119846886109208775205593, −7.42863705843390222819579607103, −7.14802580432125113899065777748, −6.58143728929926625533055443284, −5.53239807762568446308904535717, −4.48332779488844833449624175996, −3.96528573393230797957663179405, −2.89681549321638054988516613923, −0.833846377712024398168587328385,
0.52274581596858447651493779110, 2.03573216501012387839094192243, 2.98815700786283812740402780319, 3.85250334087151456132074307472, 5.05074358004740930660152782121, 6.04944810810179606470722430549, 6.33401640303732980435004047703, 7.60488641380437375455254232975, 8.589637807241450183277455844627, 9.116864393645726413804421713405