Properties

Label 2-12e3-24.11-c3-0-22
Degree $2$
Conductor $1728$
Sign $0.965 - 0.258i$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12.9·5-s − 31.5i·7-s − 13.9i·11-s − 13.5i·13-s + 123. i·17-s − 147.·19-s − 198.·23-s + 41.6·25-s + 189.·29-s + 280. i·31-s + 407. i·35-s − 348. i·37-s + 285. i·41-s + 61.6·43-s + 137.·47-s + ⋯
L(s)  = 1  − 1.15·5-s − 1.70i·7-s − 0.383i·11-s − 0.289i·13-s + 1.75i·17-s − 1.77·19-s − 1.80·23-s + 0.333·25-s + 1.21·29-s + 1.62i·31-s + 1.96i·35-s − 1.54i·37-s + 1.08i·41-s + 0.218·43-s + 0.427·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $0.965 - 0.258i$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (863, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 0.965 - 0.258i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7739109690\)
\(L(\frac12)\) \(\approx\) \(0.7739109690\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 12.9T + 125T^{2} \)
7 \( 1 + 31.5iT - 343T^{2} \)
11 \( 1 + 13.9iT - 1.33e3T^{2} \)
13 \( 1 + 13.5iT - 2.19e3T^{2} \)
17 \( 1 - 123. iT - 4.91e3T^{2} \)
19 \( 1 + 147.T + 6.85e3T^{2} \)
23 \( 1 + 198.T + 1.21e4T^{2} \)
29 \( 1 - 189.T + 2.43e4T^{2} \)
31 \( 1 - 280. iT - 2.97e4T^{2} \)
37 \( 1 + 348. iT - 5.06e4T^{2} \)
41 \( 1 - 285. iT - 6.89e4T^{2} \)
43 \( 1 - 61.6T + 7.95e4T^{2} \)
47 \( 1 - 137.T + 1.03e5T^{2} \)
53 \( 1 - 418.T + 1.48e5T^{2} \)
59 \( 1 + 567. iT - 2.05e5T^{2} \)
61 \( 1 - 286. iT - 2.26e5T^{2} \)
67 \( 1 + 784.T + 3.00e5T^{2} \)
71 \( 1 + 357.T + 3.57e5T^{2} \)
73 \( 1 - 87.3T + 3.89e5T^{2} \)
79 \( 1 + 539. iT - 4.93e5T^{2} \)
83 \( 1 + 365. iT - 5.71e5T^{2} \)
89 \( 1 - 626. iT - 7.04e5T^{2} \)
97 \( 1 - 789.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.615241810921291403833214204075, −8.192607880579070844768121124748, −7.53586082140242375530050278674, −6.66306735561370179337704487180, −5.95601263458750820922262710871, −4.35190288566403582406226884345, −4.14517400469707078294770255441, −3.34853842367133767167591603564, −1.76602054119968281375722730021, −0.55043305150120490673025026558, 0.29728303517243598286505834966, 2.12627638151765409600581578765, 2.72769914363670787480065864565, 4.05678992926913396110928193067, 4.67034512091626817447612581008, 5.74215255883343709473089721177, 6.47483143586154731791831161892, 7.46721352769144765356660195661, 8.243344890882985615799366251490, 8.780453939197823508385582857629

Graph of the $Z$-function along the critical line