L(s) = 1 | − 12.9·5-s − 31.5i·7-s − 13.9i·11-s − 13.5i·13-s + 123. i·17-s − 147.·19-s − 198.·23-s + 41.6·25-s + 189.·29-s + 280. i·31-s + 407. i·35-s − 348. i·37-s + 285. i·41-s + 61.6·43-s + 137.·47-s + ⋯ |
L(s) = 1 | − 1.15·5-s − 1.70i·7-s − 0.383i·11-s − 0.289i·13-s + 1.75i·17-s − 1.77·19-s − 1.80·23-s + 0.333·25-s + 1.21·29-s + 1.62i·31-s + 1.96i·35-s − 1.54i·37-s + 1.08i·41-s + 0.218·43-s + 0.427·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7739109690\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7739109690\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 12.9T + 125T^{2} \) |
| 7 | \( 1 + 31.5iT - 343T^{2} \) |
| 11 | \( 1 + 13.9iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 13.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 123. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 147.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 198.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 189.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 280. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 348. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 285. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 61.6T + 7.95e4T^{2} \) |
| 47 | \( 1 - 137.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 418.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 567. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 286. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 784.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 357.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 87.3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 539. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 365. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 626. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 789.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.615241810921291403833214204075, −8.192607880579070844768121124748, −7.53586082140242375530050278674, −6.66306735561370179337704487180, −5.95601263458750820922262710871, −4.35190288566403582406226884345, −4.14517400469707078294770255441, −3.34853842367133767167591603564, −1.76602054119968281375722730021, −0.55043305150120490673025026558,
0.29728303517243598286505834966, 2.12627638151765409600581578765, 2.72769914363670787480065864565, 4.05678992926913396110928193067, 4.67034512091626817447612581008, 5.74215255883343709473089721177, 6.47483143586154731791831161892, 7.46721352769144765356660195661, 8.243344890882985615799366251490, 8.780453939197823508385582857629