Properties

Label 2-12e3-24.11-c3-0-13
Degree $2$
Conductor $1728$
Sign $0.258 - 0.965i$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.5·5-s − 0.800i·7-s + 51.7i·11-s − 83.0i·13-s − 20.1i·17-s + 22.3·19-s − 79.4·23-s + 147.·25-s − 134.·29-s + 33.5i·31-s + 13.2i·35-s − 384. i·37-s − 71.4i·41-s − 464.·43-s + 278.·47-s + ⋯
L(s)  = 1  − 1.47·5-s − 0.0432i·7-s + 1.41i·11-s − 1.77i·13-s − 0.287i·17-s + 0.269·19-s − 0.719·23-s + 1.17·25-s − 0.861·29-s + 0.194i·31-s + 0.0637i·35-s − 1.70i·37-s − 0.272i·41-s − 1.64·43-s + 0.863·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $0.258 - 0.965i$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (863, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 0.258 - 0.965i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6870257960\)
\(L(\frac12)\) \(\approx\) \(0.6870257960\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 16.5T + 125T^{2} \)
7 \( 1 + 0.800iT - 343T^{2} \)
11 \( 1 - 51.7iT - 1.33e3T^{2} \)
13 \( 1 + 83.0iT - 2.19e3T^{2} \)
17 \( 1 + 20.1iT - 4.91e3T^{2} \)
19 \( 1 - 22.3T + 6.85e3T^{2} \)
23 \( 1 + 79.4T + 1.21e4T^{2} \)
29 \( 1 + 134.T + 2.43e4T^{2} \)
31 \( 1 - 33.5iT - 2.97e4T^{2} \)
37 \( 1 + 384. iT - 5.06e4T^{2} \)
41 \( 1 + 71.4iT - 6.89e4T^{2} \)
43 \( 1 + 464.T + 7.95e4T^{2} \)
47 \( 1 - 278.T + 1.03e5T^{2} \)
53 \( 1 - 362.T + 1.48e5T^{2} \)
59 \( 1 + 315. iT - 2.05e5T^{2} \)
61 \( 1 + 126. iT - 2.26e5T^{2} \)
67 \( 1 + 857.T + 3.00e5T^{2} \)
71 \( 1 - 771.T + 3.57e5T^{2} \)
73 \( 1 + 687.T + 3.89e5T^{2} \)
79 \( 1 - 317. iT - 4.93e5T^{2} \)
83 \( 1 - 184. iT - 5.71e5T^{2} \)
89 \( 1 + 1.26e3iT - 7.04e5T^{2} \)
97 \( 1 - 871.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.028833595592119684611646171741, −8.137800244076937221603660740165, −7.48859795940332394218907038517, −7.15564169002863598276138218384, −5.77481475004176761722888370091, −4.95621059009804543861596075126, −4.03987957533559349041642194798, −3.36222113430489067312517372736, −2.18687136074067850294999929242, −0.67152076617546061102243229717, 0.23287200828208987198457424597, 1.52200913812968683533916549871, 2.96202576308189609788437830186, 3.86667803871648362787482199720, 4.36380811543127401723643253884, 5.56859579773490673465154174417, 6.51372871770729664701808319189, 7.23762023010912568837641059688, 8.134547310312557771883846190742, 8.615854253123468342187289789385

Graph of the $Z$-function along the critical line