L(s) = 1 | − 16.5·5-s − 0.800i·7-s + 51.7i·11-s − 83.0i·13-s − 20.1i·17-s + 22.3·19-s − 79.4·23-s + 147.·25-s − 134.·29-s + 33.5i·31-s + 13.2i·35-s − 384. i·37-s − 71.4i·41-s − 464.·43-s + 278.·47-s + ⋯ |
L(s) = 1 | − 1.47·5-s − 0.0432i·7-s + 1.41i·11-s − 1.77i·13-s − 0.287i·17-s + 0.269·19-s − 0.719·23-s + 1.17·25-s − 0.861·29-s + 0.194i·31-s + 0.0637i·35-s − 1.70i·37-s − 0.272i·41-s − 1.64·43-s + 0.863·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6870257960\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6870257960\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 16.5T + 125T^{2} \) |
| 7 | \( 1 + 0.800iT - 343T^{2} \) |
| 11 | \( 1 - 51.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 83.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 20.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 22.3T + 6.85e3T^{2} \) |
| 23 | \( 1 + 79.4T + 1.21e4T^{2} \) |
| 29 | \( 1 + 134.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 33.5iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 384. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 71.4iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 464.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 278.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 362.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 315. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 126. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 857.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 771.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 687.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 317. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 184. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.26e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 871.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.028833595592119684611646171741, −8.137800244076937221603660740165, −7.48859795940332394218907038517, −7.15564169002863598276138218384, −5.77481475004176761722888370091, −4.95621059009804543861596075126, −4.03987957533559349041642194798, −3.36222113430489067312517372736, −2.18687136074067850294999929242, −0.67152076617546061102243229717,
0.23287200828208987198457424597, 1.52200913812968683533916549871, 2.96202576308189609788437830186, 3.86667803871648362787482199720, 4.36380811543127401723643253884, 5.56859579773490673465154174417, 6.51372871770729664701808319189, 7.23762023010912568837641059688, 8.134547310312557771883846190742, 8.615854253123468342187289789385