L(s) = 1 | − 1.73·7-s + 91.7i·13-s − 163i·19-s + 125·25-s + 155.·31-s − 313. i·37-s + 520i·43-s − 340·49-s + 625. i·61-s + 127i·67-s − 919·73-s − 219.·79-s − 159i·91-s + 523·97-s + 1.06e3·103-s + ⋯ |
L(s) = 1 | − 0.0935·7-s + 1.95i·13-s − 1.96i·19-s + 25-s + 0.903·31-s − 1.39i·37-s + 1.84i·43-s − 0.991·49-s + 1.31i·61-s + 0.231i·67-s − 1.47·73-s − 0.313·79-s − 0.183i·91-s + 0.547·97-s + 1.01·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.728805476\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.728805476\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 125T^{2} \) |
| 7 | \( 1 + 1.73T + 343T^{2} \) |
| 11 | \( 1 - 1.33e3T^{2} \) |
| 13 | \( 1 - 91.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 4.91e3T^{2} \) |
| 19 | \( 1 + 163iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 1.21e4T^{2} \) |
| 29 | \( 1 - 2.43e4T^{2} \) |
| 31 | \( 1 - 155.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 313. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 6.89e4T^{2} \) |
| 43 | \( 1 - 520iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 1.03e5T^{2} \) |
| 53 | \( 1 - 1.48e5T^{2} \) |
| 59 | \( 1 - 2.05e5T^{2} \) |
| 61 | \( 1 - 625. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 127iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 + 919T + 3.89e5T^{2} \) |
| 79 | \( 1 + 219.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 5.71e5T^{2} \) |
| 89 | \( 1 + 7.04e5T^{2} \) |
| 97 | \( 1 - 523T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.115678480342251994168988752695, −8.551914245403315444275934299582, −7.32513703611446640468079055422, −6.81046765058969886622343914944, −6.05974752039640658702876936484, −4.75241159171612797542042683976, −4.39091997758369105162979624373, −3.07110242143556463212962473125, −2.16239078533963183469376191596, −0.947306926521746880504357780099,
0.43778951983019546147670093414, 1.56151425800261587269196068902, 2.92264084675023507110674358166, 3.55231451553519128178799876089, 4.76658492051157705290141707712, 5.59499995524108001055050333564, 6.26575726033708255830636963305, 7.30865488372189199345028612002, 8.151302240667971361978221301448, 8.518478080595025320302420430536