Properties

Label 2-12e3-12.11-c3-0-85
Degree $2$
Conductor $1728$
Sign $-1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.05i·5-s − 20.0i·7-s + 14.7·11-s − 12.7·13-s + 58.0i·17-s − 10.9i·19-s − 74.3·23-s + 60.1·25-s − 144. i·29-s − 181. i·31-s − 161.·35-s − 99.7·37-s − 249. i·41-s − 201. i·43-s + 416.·47-s + ⋯
L(s)  = 1  − 0.720i·5-s − 1.08i·7-s + 0.403·11-s − 0.272·13-s + 0.827i·17-s − 0.132i·19-s − 0.674·23-s + 0.481·25-s − 0.925i·29-s − 1.05i·31-s − 0.779·35-s − 0.443·37-s − 0.951i·41-s − 0.715i·43-s + 1.29·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (1727, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.070371595\)
\(L(\frac12)\) \(\approx\) \(1.070371595\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 8.05iT - 125T^{2} \)
7 \( 1 + 20.0iT - 343T^{2} \)
11 \( 1 - 14.7T + 1.33e3T^{2} \)
13 \( 1 + 12.7T + 2.19e3T^{2} \)
17 \( 1 - 58.0iT - 4.91e3T^{2} \)
19 \( 1 + 10.9iT - 6.85e3T^{2} \)
23 \( 1 + 74.3T + 1.21e4T^{2} \)
29 \( 1 + 144. iT - 2.43e4T^{2} \)
31 \( 1 + 181. iT - 2.97e4T^{2} \)
37 \( 1 + 99.7T + 5.06e4T^{2} \)
41 \( 1 + 249. iT - 6.89e4T^{2} \)
43 \( 1 + 201. iT - 7.95e4T^{2} \)
47 \( 1 - 416.T + 1.03e5T^{2} \)
53 \( 1 + 420. iT - 1.48e5T^{2} \)
59 \( 1 + 266.T + 2.05e5T^{2} \)
61 \( 1 + 199.T + 2.26e5T^{2} \)
67 \( 1 + 55.6iT - 3.00e5T^{2} \)
71 \( 1 - 704.T + 3.57e5T^{2} \)
73 \( 1 + 1.10e3T + 3.89e5T^{2} \)
79 \( 1 - 751. iT - 4.93e5T^{2} \)
83 \( 1 + 746.T + 5.71e5T^{2} \)
89 \( 1 - 1.25e3iT - 7.04e5T^{2} \)
97 \( 1 - 575.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.555712862724816860264909000681, −7.78901653206710997113617150428, −7.04655018017801432926095396177, −6.15259075569083888309064877692, −5.25069913025199676929392189427, −4.20827008045610269553799127275, −3.80834101113565245306761466865, −2.29874643781246690470358391806, −1.17478958866731295877258601390, −0.23832178500955125029555537601, 1.41466864337703951271330948580, 2.61103203775847593161181404856, 3.18969878606222644037214927063, 4.46652442603248739115936110652, 5.36347585343692407375937029484, 6.18131320580618230998551330040, 6.94227264633447228096096098183, 7.69107664017674899234112225948, 8.763747999080782901227902650303, 9.191973891274258728537348835421

Graph of the $Z$-function along the critical line