Properties

Label 2-12e3-12.11-c3-0-19
Degree $2$
Conductor $1728$
Sign $-1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.1i·5-s + 5.50i·7-s − 4.17·11-s + 38.7·13-s + 84.9i·17-s − 140. i·19-s + 36.4·23-s − 279.·25-s + 129. i·29-s + 264. i·31-s − 110.·35-s − 28.1·37-s + 426. i·41-s + 357. i·43-s + 303.·47-s + ⋯
L(s)  = 1  + 1.79i·5-s + 0.297i·7-s − 0.114·11-s + 0.825·13-s + 1.21i·17-s − 1.69i·19-s + 0.330·23-s − 2.23·25-s + 0.830i·29-s + 1.53i·31-s − 0.534·35-s − 0.125·37-s + 1.62i·41-s + 1.26i·43-s + 0.942·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (1727, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.539534850\)
\(L(\frac12)\) \(\approx\) \(1.539534850\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 20.1iT - 125T^{2} \)
7 \( 1 - 5.50iT - 343T^{2} \)
11 \( 1 + 4.17T + 1.33e3T^{2} \)
13 \( 1 - 38.7T + 2.19e3T^{2} \)
17 \( 1 - 84.9iT - 4.91e3T^{2} \)
19 \( 1 + 140. iT - 6.85e3T^{2} \)
23 \( 1 - 36.4T + 1.21e4T^{2} \)
29 \( 1 - 129. iT - 2.43e4T^{2} \)
31 \( 1 - 264. iT - 2.97e4T^{2} \)
37 \( 1 + 28.1T + 5.06e4T^{2} \)
41 \( 1 - 426. iT - 6.89e4T^{2} \)
43 \( 1 - 357. iT - 7.95e4T^{2} \)
47 \( 1 - 303.T + 1.03e5T^{2} \)
53 \( 1 - 101. iT - 1.48e5T^{2} \)
59 \( 1 + 115.T + 2.05e5T^{2} \)
61 \( 1 - 139.T + 2.26e5T^{2} \)
67 \( 1 + 179. iT - 3.00e5T^{2} \)
71 \( 1 + 515.T + 3.57e5T^{2} \)
73 \( 1 - 448.T + 3.89e5T^{2} \)
79 \( 1 + 1.35e3iT - 4.93e5T^{2} \)
83 \( 1 + 726.T + 5.71e5T^{2} \)
89 \( 1 - 1.20e3iT - 7.04e5T^{2} \)
97 \( 1 + 1.19e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.338661817562600520203998416588, −8.570597258915168080834013056406, −7.66654720025367962003484055913, −6.76100523633991102942486389830, −6.43624991284646473345949970122, −5.45103550648858363511939673974, −4.25578630506757295811931096018, −3.18938876755027434637432376258, −2.71536377444833269260739659960, −1.42989986216070388833434320479, 0.35486663758090216079874666408, 1.12924290323367850010662438326, 2.21248529997116871698125848554, 3.82419530010863943349981788582, 4.28111488828309675057182078401, 5.48406546671306550623848586666, 5.73526141881497194028260334761, 7.12293699436964246054656409615, 7.964688480708215413912826707159, 8.557902034170972237478897658143

Graph of the $Z$-function along the critical line