L(s) = 1 | − 3.33i·5-s + 16.9i·7-s − 16.8·11-s − 25.0·13-s − 116. i·17-s − 85.4i·19-s − 158.·23-s + 113.·25-s + 269. i·29-s − 36.0i·31-s + 56.3·35-s + 353.·37-s − 144. i·41-s + 368. i·43-s + 397.·47-s + ⋯ |
L(s) = 1 | − 0.297i·5-s + 0.912i·7-s − 0.461·11-s − 0.535·13-s − 1.66i·17-s − 1.03i·19-s − 1.43·23-s + 0.911·25-s + 1.72i·29-s − 0.209i·31-s + 0.271·35-s + 1.57·37-s − 0.550i·41-s + 1.30i·43-s + 1.23·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.187821058\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.187821058\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 3.33iT - 125T^{2} \) |
| 7 | \( 1 - 16.9iT - 343T^{2} \) |
| 11 | \( 1 + 16.8T + 1.33e3T^{2} \) |
| 13 | \( 1 + 25.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + 116. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 85.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 158.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 269. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 36.0iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 353.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 144. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 368. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 397.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 96.0iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 294.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 146.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 301. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 687.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 312.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 602. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 1.33e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 856. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 218.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.165819451531957973560262140057, −8.497676202666518353580364321832, −7.52926022883070525574462302172, −6.87716343497750540890543329008, −5.76171523050891260149028699538, −5.11010877528394394448751389558, −4.38187268943216033235629913307, −2.89090766244910276977453491829, −2.41551052048171527004548509925, −0.908370860573952625871299080967,
0.29751181847538410347542223918, 1.61893284153425038131109370139, 2.66455625218471255131653717454, 3.92795467700246474101171334932, 4.32061093794092323594191297304, 5.73351306096975581975590242530, 6.23693354785645948278002709188, 7.34174834819864651053767484884, 7.88359902739425958148296716877, 8.589988546002171233737926338131