Properties

Label 2-12e3-1.1-c3-0-6
Degree $2$
Conductor $1728$
Sign $1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·5-s − 7·7-s − 60·11-s + 79·13-s − 108·17-s − 11·19-s − 132·23-s + 19·25-s − 96·29-s + 20·31-s + 84·35-s + 169·37-s + 192·41-s − 488·43-s + 204·47-s − 294·49-s − 360·53-s + 720·55-s − 156·59-s − 83·61-s − 948·65-s − 47·67-s + 216·71-s − 511·73-s + 420·77-s − 529·79-s + 1.12e3·83-s + ⋯
L(s)  = 1  − 1.07·5-s − 0.377·7-s − 1.64·11-s + 1.68·13-s − 1.54·17-s − 0.132·19-s − 1.19·23-s + 0.151·25-s − 0.614·29-s + 0.115·31-s + 0.405·35-s + 0.750·37-s + 0.731·41-s − 1.73·43-s + 0.633·47-s − 6/7·49-s − 0.933·53-s + 1.76·55-s − 0.344·59-s − 0.174·61-s − 1.80·65-s − 0.0857·67-s + 0.361·71-s − 0.819·73-s + 0.621·77-s − 0.753·79-s + 1.49·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5858183057\)
\(L(\frac12)\) \(\approx\) \(0.5858183057\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 12 T + p^{3} T^{2} \)
7 \( 1 + p T + p^{3} T^{2} \)
11 \( 1 + 60 T + p^{3} T^{2} \)
13 \( 1 - 79 T + p^{3} T^{2} \)
17 \( 1 + 108 T + p^{3} T^{2} \)
19 \( 1 + 11 T + p^{3} T^{2} \)
23 \( 1 + 132 T + p^{3} T^{2} \)
29 \( 1 + 96 T + p^{3} T^{2} \)
31 \( 1 - 20 T + p^{3} T^{2} \)
37 \( 1 - 169 T + p^{3} T^{2} \)
41 \( 1 - 192 T + p^{3} T^{2} \)
43 \( 1 + 488 T + p^{3} T^{2} \)
47 \( 1 - 204 T + p^{3} T^{2} \)
53 \( 1 + 360 T + p^{3} T^{2} \)
59 \( 1 + 156 T + p^{3} T^{2} \)
61 \( 1 + 83 T + p^{3} T^{2} \)
67 \( 1 + 47 T + p^{3} T^{2} \)
71 \( 1 - 216 T + p^{3} T^{2} \)
73 \( 1 + 7 p T + p^{3} T^{2} \)
79 \( 1 + 529 T + p^{3} T^{2} \)
83 \( 1 - 1128 T + p^{3} T^{2} \)
89 \( 1 - 36 T + p^{3} T^{2} \)
97 \( 1 - 605 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.731720408949213723544000450016, −8.145160784999690714632140150138, −7.58252513759878242579728998127, −6.50742360848819572866812198993, −5.84329010135395616699881105959, −4.68486594615514143351772935060, −3.92902658969350799008952303564, −3.09049392685859135768109995391, −1.94675074622243008283521464427, −0.34560588440245853907039467773, 0.34560588440245853907039467773, 1.94675074622243008283521464427, 3.09049392685859135768109995391, 3.92902658969350799008952303564, 4.68486594615514143351772935060, 5.84329010135395616699881105959, 6.50742360848819572866812198993, 7.58252513759878242579728998127, 8.145160784999690714632140150138, 8.731720408949213723544000450016

Graph of the $Z$-function along the critical line