| L(s) = 1 | − 1.73·7-s + 1.73i·13-s + i·19-s − 25-s + 1.73i·37-s + 2i·43-s + 1.99·49-s − 1.73i·61-s − i·67-s − 73-s − 1.73·79-s − 2.99i·91-s + 97-s + 1.73·103-s + ⋯ |
| L(s) = 1 | − 1.73·7-s + 1.73i·13-s + i·19-s − 25-s + 1.73i·37-s + 2i·43-s + 1.99·49-s − 1.73i·61-s − i·67-s − 73-s − 1.73·79-s − 2.99i·91-s + 97-s + 1.73·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6342435464\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6342435464\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + 1.73T + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - 1.73iT - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - 1.73iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 1.73iT - T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + 1.73T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.702820901125660573436345466720, −9.183040230168732113106534547477, −8.203069295365769715082556465148, −7.23398982359682651920682043386, −6.36512830745111480021899452796, −6.10369930287206406779904534040, −4.69007782614118770680168609932, −3.80692219246757224978804995502, −2.99981303877586771403430792425, −1.72280138499637881989110314377,
0.46338051862625487952607940924, 2.48014192037986862179197496554, 3.25591163728466483437690393791, 4.08379331213660696936032823688, 5.51353532999741307869215834485, 5.90508806644719562779067785606, 6.99326595092749575480987268386, 7.51821779879046723797360365830, 8.669301247567022146980044254525, 9.265227174105815900397456006040