Properties

Label 2-1710-57.56-c3-0-78
Degree $2$
Conductor $1710$
Sign $-0.927 + 0.372i$
Analytic cond. $100.893$
Root an. cond. $10.0445$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s − 5i·5-s + 17.5·7-s − 8·8-s + 10i·10-s − 49.3i·11-s − 39.2i·13-s − 35.0·14-s + 16·16-s − 94.2i·17-s + (44.9 − 69.5i)19-s − 20i·20-s + 98.7i·22-s − 185. i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.447i·5-s + 0.946·7-s − 0.353·8-s + 0.316i·10-s − 1.35i·11-s − 0.836i·13-s − 0.669·14-s + 0.250·16-s − 1.34i·17-s + (0.542 − 0.840i)19-s − 0.223i·20-s + 0.956i·22-s − 1.68i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.927 + 0.372i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.927 + 0.372i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-0.927 + 0.372i$
Analytic conductor: \(100.893\)
Root analytic conductor: \(10.0445\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1710} (341, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :3/2),\ -0.927 + 0.372i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.416894463\)
\(L(\frac12)\) \(\approx\) \(1.416894463\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 + 5iT \)
19 \( 1 + (-44.9 + 69.5i)T \)
good7 \( 1 - 17.5T + 343T^{2} \)
11 \( 1 + 49.3iT - 1.33e3T^{2} \)
13 \( 1 + 39.2iT - 2.19e3T^{2} \)
17 \( 1 + 94.2iT - 4.91e3T^{2} \)
23 \( 1 + 185. iT - 1.21e4T^{2} \)
29 \( 1 - 78.1T + 2.43e4T^{2} \)
31 \( 1 + 28.3iT - 2.97e4T^{2} \)
37 \( 1 - 0.416iT - 5.06e4T^{2} \)
41 \( 1 + 67.3T + 6.89e4T^{2} \)
43 \( 1 + 254.T + 7.95e4T^{2} \)
47 \( 1 + 69.4iT - 1.03e5T^{2} \)
53 \( 1 + 262.T + 1.48e5T^{2} \)
59 \( 1 + 203.T + 2.05e5T^{2} \)
61 \( 1 - 47.2T + 2.26e5T^{2} \)
67 \( 1 - 822. iT - 3.00e5T^{2} \)
71 \( 1 - 661.T + 3.57e5T^{2} \)
73 \( 1 - 344.T + 3.89e5T^{2} \)
79 \( 1 + 702. iT - 4.93e5T^{2} \)
83 \( 1 - 237. iT - 5.71e5T^{2} \)
89 \( 1 + 808.T + 7.04e5T^{2} \)
97 \( 1 - 1.79e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.479590631856576774239524313051, −8.147384738848446155191336782973, −7.20768618379846606134909676158, −6.29361997912104232230252351089, −5.28573463683921910487352701147, −4.70562279665244624084135018690, −3.26117808386790643844825414740, −2.43423819535215067836659926394, −1.00590093247399193857897664934, −0.43484984687100558841430908769, 1.61308578915559657180781774055, 1.80983785044221856473978607821, 3.34463480303733734010997879847, 4.32646148827580259711547749831, 5.29155017538104009344257888097, 6.31232763725457584152126783238, 7.11794741868337012793649859588, 7.81110694407464440705718906866, 8.386117730517789047497171542218, 9.500023881665088438276210377519

Graph of the $Z$-function along the critical line