L(s) = 1 | − 2·2-s + 4·4-s + 5i·5-s − 16.5·7-s − 8·8-s − 10i·10-s − 6.84i·11-s + 45.4i·13-s + 33.0·14-s + 16·16-s − 71.2i·17-s + (0.472 − 82.8i)19-s + 20i·20-s + 13.6i·22-s + 138. i·23-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.447i·5-s − 0.891·7-s − 0.353·8-s − 0.316i·10-s − 0.187i·11-s + 0.969i·13-s + 0.630·14-s + 0.250·16-s − 1.01i·17-s + (0.00570 − 0.999i)19-s + 0.223i·20-s + 0.132i·22-s + 1.25i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.581 - 0.813i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.581 - 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9527258949\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9527258949\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
| 19 | \( 1 + (-0.472 + 82.8i)T \) |
good | 7 | \( 1 + 16.5T + 343T^{2} \) |
| 11 | \( 1 + 6.84iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 45.4iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 71.2iT - 4.91e3T^{2} \) |
| 23 | \( 1 - 138. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 42.3T + 2.43e4T^{2} \) |
| 31 | \( 1 - 86.7iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 410. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 412.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 481.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 268. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 72.1T + 1.48e5T^{2} \) |
| 59 | \( 1 - 125.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 125.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 82.5iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 347.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 796.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 174. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.16e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 874.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 978. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.400278287902504248604520959037, −8.446367422833572696985775791319, −7.19359103218428475674923662014, −7.04970325173063039419127991035, −6.08946530817299869162989430851, −5.12980667862090151293110068280, −3.85010891010734483237563892054, −2.97854323533024854486745656823, −2.05547791168346422427576248983, −0.65592408772851481624733192108,
0.40773894030635097256020693032, 1.50842319100817234106011148033, 2.73266597378543672556437228966, 3.63787323799272885312234333413, 4.73308293144352381756101729568, 5.93445503754925334564118908012, 6.35632274156228666949105702850, 7.43004886178429217150323452708, 8.267195490893406216220629024377, 8.685517002732559622258093287090