Properties

Label 2-1710-57.56-c3-0-8
Degree $2$
Conductor $1710$
Sign $-0.829 - 0.559i$
Analytic cond. $100.893$
Root an. cond. $10.0445$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 5i·5-s + 4.15·7-s − 8·8-s − 10i·10-s + 13.6i·11-s − 65.3i·13-s − 8.30·14-s + 16·16-s + 44.6i·17-s + (29.3 + 77.4i)19-s + 20i·20-s − 27.2i·22-s − 76.5i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447i·5-s + 0.224·7-s − 0.353·8-s − 0.316i·10-s + 0.373i·11-s − 1.39i·13-s − 0.158·14-s + 0.250·16-s + 0.637i·17-s + (0.354 + 0.935i)19-s + 0.223i·20-s − 0.264i·22-s − 0.694i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.829 - 0.559i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.829 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-0.829 - 0.559i$
Analytic conductor: \(100.893\)
Root analytic conductor: \(10.0445\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1710} (341, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :3/2),\ -0.829 - 0.559i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5867593490\)
\(L(\frac12)\) \(\approx\) \(0.5867593490\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 - 5iT \)
19 \( 1 + (-29.3 - 77.4i)T \)
good7 \( 1 - 4.15T + 343T^{2} \)
11 \( 1 - 13.6iT - 1.33e3T^{2} \)
13 \( 1 + 65.3iT - 2.19e3T^{2} \)
17 \( 1 - 44.6iT - 4.91e3T^{2} \)
23 \( 1 + 76.5iT - 1.21e4T^{2} \)
29 \( 1 + 175.T + 2.43e4T^{2} \)
31 \( 1 - 85.0iT - 2.97e4T^{2} \)
37 \( 1 + 367. iT - 5.06e4T^{2} \)
41 \( 1 - 29.6T + 6.89e4T^{2} \)
43 \( 1 - 217.T + 7.95e4T^{2} \)
47 \( 1 - 613. iT - 1.03e5T^{2} \)
53 \( 1 - 706.T + 1.48e5T^{2} \)
59 \( 1 + 115.T + 2.05e5T^{2} \)
61 \( 1 + 602.T + 2.26e5T^{2} \)
67 \( 1 - 514. iT - 3.00e5T^{2} \)
71 \( 1 + 233.T + 3.57e5T^{2} \)
73 \( 1 + 42.8T + 3.89e5T^{2} \)
79 \( 1 - 41.1iT - 4.93e5T^{2} \)
83 \( 1 - 1.30e3iT - 5.71e5T^{2} \)
89 \( 1 - 600.T + 7.04e5T^{2} \)
97 \( 1 - 554. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.336230801547887071662058195799, −8.412963878071724037344569927470, −7.73465815646760253375408665734, −7.19393708826785922096802080655, −6.04098410575763234421312875418, −5.52784917515102136785623573632, −4.18501558846577891398705837589, −3.20407970311095519804470629736, −2.22619982427653112217380837654, −1.11367173413494443670821622717, 0.17330850013135298693173724892, 1.32432622643222261251096189259, 2.27386967654589751157228864076, 3.47530838490169579500136086758, 4.55967573093771665944445354603, 5.39805907213875784878524901946, 6.41917063733571046127564223105, 7.19467536397261150479666798418, 7.88353010691662908417303763237, 8.939334290456865969027309526594

Graph of the $Z$-function along the critical line