Properties

Label 2-1710-57.56-c3-0-19
Degree $2$
Conductor $1710$
Sign $0.539 - 0.842i$
Analytic cond. $100.893$
Root an. cond. $10.0445$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 5i·5-s − 6.26·7-s − 8·8-s − 10i·10-s − 46.2i·11-s − 34.4i·13-s + 12.5·14-s + 16·16-s − 13.4i·17-s + (−76.7 + 31.1i)19-s + 20i·20-s + 92.5i·22-s + 111. i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447i·5-s − 0.338·7-s − 0.353·8-s − 0.316i·10-s − 1.26i·11-s − 0.734i·13-s + 0.239·14-s + 0.250·16-s − 0.191i·17-s + (−0.926 + 0.376i)19-s + 0.223i·20-s + 0.897i·22-s + 1.01i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.539 - 0.842i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.539 - 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $0.539 - 0.842i$
Analytic conductor: \(100.893\)
Root analytic conductor: \(10.0445\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1710} (341, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :3/2),\ 0.539 - 0.842i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8525807448\)
\(L(\frac12)\) \(\approx\) \(0.8525807448\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
5 \( 1 - 5iT \)
19 \( 1 + (76.7 - 31.1i)T \)
good7 \( 1 + 6.26T + 343T^{2} \)
11 \( 1 + 46.2iT - 1.33e3T^{2} \)
13 \( 1 + 34.4iT - 2.19e3T^{2} \)
17 \( 1 + 13.4iT - 4.91e3T^{2} \)
23 \( 1 - 111. iT - 1.21e4T^{2} \)
29 \( 1 + 144.T + 2.43e4T^{2} \)
31 \( 1 - 30.8iT - 2.97e4T^{2} \)
37 \( 1 - 60.7iT - 5.06e4T^{2} \)
41 \( 1 + 39.9T + 6.89e4T^{2} \)
43 \( 1 + 422.T + 7.95e4T^{2} \)
47 \( 1 - 33.6iT - 1.03e5T^{2} \)
53 \( 1 - 600.T + 1.48e5T^{2} \)
59 \( 1 - 711.T + 2.05e5T^{2} \)
61 \( 1 - 576.T + 2.26e5T^{2} \)
67 \( 1 + 269. iT - 3.00e5T^{2} \)
71 \( 1 - 291.T + 3.57e5T^{2} \)
73 \( 1 + 457.T + 3.89e5T^{2} \)
79 \( 1 + 949. iT - 4.93e5T^{2} \)
83 \( 1 + 737. iT - 5.71e5T^{2} \)
89 \( 1 + 1.47e3T + 7.04e5T^{2} \)
97 \( 1 - 469. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.986833515616664883110260139765, −8.374514094874114973066726999969, −7.63526707413492644172943264370, −6.76066584267595508503610603990, −6.00665150253677384426162211796, −5.28316919368172659285429316303, −3.71981976122570079283215732171, −3.12943608323056128199596864196, −1.98168638334851472292297528894, −0.69027769602490276458814866920, 0.33329060154657019840051902309, 1.71520331111995825841646854930, 2.42578449844618102609404370672, 3.87971901153529984150078397689, 4.64388888162492827701161202188, 5.69332691162347213565142193687, 6.82547244490861091120663290342, 7.07089314226408665330132144064, 8.348215487137121288504405112866, 8.724610160780983272272962537714

Graph of the $Z$-function along the critical line