| L(s) = 1 | + (0.987 + 0.156i)2-s + (0.951 + 0.309i)4-s + (0.951 − 0.309i)5-s + (0.891 + 0.453i)8-s + (0.156 + 0.987i)9-s + (0.987 − 0.156i)10-s + (−1.44 − 1.04i)13-s + (0.809 + 0.587i)16-s + (−0.587 + 0.809i)17-s + i·18-s + 20-s + (0.809 − 0.587i)25-s + (−1.26 − 1.26i)26-s + (−1.29 − 1.10i)29-s + (0.707 + 0.707i)32-s + ⋯ |
| L(s) = 1 | + (0.987 + 0.156i)2-s + (0.951 + 0.309i)4-s + (0.951 − 0.309i)5-s + (0.891 + 0.453i)8-s + (0.156 + 0.987i)9-s + (0.987 − 0.156i)10-s + (−1.44 − 1.04i)13-s + (0.809 + 0.587i)16-s + (−0.587 + 0.809i)17-s + i·18-s + 20-s + (0.809 − 0.587i)25-s + (−1.26 − 1.26i)26-s + (−1.29 − 1.10i)29-s + (0.707 + 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 - 0.323i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 - 0.323i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.319802402\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.319802402\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.987 - 0.156i)T \) |
| 5 | \( 1 + (-0.951 + 0.309i)T \) |
| 17 | \( 1 + (0.587 - 0.809i)T \) |
| good | 3 | \( 1 + (-0.156 - 0.987i)T^{2} \) |
| 7 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.453 + 0.891i)T^{2} \) |
| 13 | \( 1 + (1.44 + 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 23 | \( 1 + (-0.453 - 0.891i)T^{2} \) |
| 29 | \( 1 + (1.29 + 1.10i)T + (0.156 + 0.987i)T^{2} \) |
| 31 | \( 1 + (0.987 + 0.156i)T^{2} \) |
| 37 | \( 1 + (1.65 - 1.01i)T + (0.453 - 0.891i)T^{2} \) |
| 41 | \( 1 + (-0.465 + 1.93i)T + (-0.891 - 0.453i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.412i)T + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 61 | \( 1 + (-0.133 - 0.0819i)T + (0.453 + 0.891i)T^{2} \) |
| 67 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (0.156 + 0.987i)T^{2} \) |
| 73 | \( 1 + (-1.26 + 0.303i)T + (0.891 - 0.453i)T^{2} \) |
| 79 | \( 1 + (0.987 - 0.156i)T^{2} \) |
| 83 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + (-1.16 - 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.303 + 0.355i)T + (-0.156 - 0.987i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.791468625858565042527483895034, −8.645311989240697177368200193375, −7.78614354197428739283487728870, −7.12552625171929531281277754476, −6.12507174319746145319322138728, −5.31617584835635326620471041686, −4.92555025878027446790384564310, −3.79554916562065850481402846154, −2.48430602804289884098991289874, −1.93923873975810357965920245070,
1.68544135996880037208631605018, 2.57101032518208175489836952859, 3.53973592794457198542090430071, 4.63366303976047554891023254406, 5.29999117223819565623159357332, 6.28163213715379768272409800448, 6.91136464068685741855609004363, 7.42283227478195445058330672130, 9.125963592084453929352838440860, 9.462724986996215488480341750226