L(s) = 1 | + (−1.70 − 1.70i)2-s + (0.414 + i)3-s + 3.82i·4-s + (−0.707 + 0.292i)5-s + (1 − 2.41i)6-s + (−2.41 − i)7-s + (3.12 − 3.12i)8-s + (1.29 − 1.29i)9-s + (1.70 + 0.707i)10-s + (−1 + 2.41i)11-s + (−3.82 + 1.58i)12-s − 1.41i·13-s + (2.41 + 5.82i)14-s + (−0.585 − 0.585i)15-s − 2.99·16-s + (2.82 − 3i)17-s + ⋯ |
L(s) = 1 | + (−1.20 − 1.20i)2-s + (0.239 + 0.577i)3-s + 1.91i·4-s + (−0.316 + 0.130i)5-s + (0.408 − 0.985i)6-s + (−0.912 − 0.377i)7-s + (1.10 − 1.10i)8-s + (0.430 − 0.430i)9-s + (0.539 + 0.223i)10-s + (−0.301 + 0.727i)11-s + (−1.10 + 0.457i)12-s − 0.392i·13-s + (0.645 + 1.55i)14-s + (−0.151 − 0.151i)15-s − 0.749·16-s + (0.685 − 0.727i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.673 + 0.739i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.673 + 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.324898 - 0.143520i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.324898 - 0.143520i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 + (-2.82 + 3i)T \) |
good | 2 | \( 1 + (1.70 + 1.70i)T + 2iT^{2} \) |
| 3 | \( 1 + (-0.414 - i)T + (-2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (0.707 - 0.292i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (2.41 + i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1 - 2.41i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 1.41iT - 13T^{2} \) |
| 19 | \( 1 + (-0.585 - 0.585i)T + 19iT^{2} \) |
| 23 | \( 1 + (1.82 - 4.41i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (0.292 - 0.121i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (3 + 7.24i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-3.53 - 8.53i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-1.12 - 0.464i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (0.585 - 0.585i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.17iT - 47T^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4.24 + 4.24i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.53 + 1.46i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 1.17T + 67T^{2} \) |
| 71 | \( 1 + (2.07 + 5i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (11.9 - 4.94i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-1.82 + 4.41i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-8.24 - 8.24i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.58iT - 89T^{2} \) |
| 97 | \( 1 + (-9.53 + 3.94i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.01463016934513832809466640220, −17.97365516705076145075471799876, −16.58309121534504542541749243770, −15.29053841161705035577093266686, −13.01438382222935165276952421923, −11.69015461759250798597364696764, −10.06336598180932952144978764529, −9.538072377630503931469175384201, −7.58544203495244752743489520942, −3.48616011786062289576592162458,
6.14743572620168908564155996007, 7.59353250379502107111273587820, 8.787455779585150857889124623441, 10.31660880773855664947822962414, 12.64612980251574111590139919250, 14.29692826949536558292876311602, 15.92403802772579260842764391622, 16.41162454944289048444564579122, 18.03589364335640505922420846295, 19.01262672139491597150907330135