Properties

Label 2-1690-13.12-c1-0-49
Degree $2$
Conductor $1690$
Sign $-0.999 - 0.0304i$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 1.24·3-s − 4-s + i·5-s − 1.24i·6-s − 2.49i·7-s + i·8-s − 1.44·9-s + 10-s − 5.80i·11-s − 1.24·12-s − 2.49·14-s + 1.24i·15-s + 16-s − 4.29·17-s + 1.44i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.719·3-s − 0.5·4-s + 0.447i·5-s − 0.509i·6-s − 0.942i·7-s + 0.353i·8-s − 0.481·9-s + 0.316·10-s − 1.74i·11-s − 0.359·12-s − 0.666·14-s + 0.321i·15-s + 0.250·16-s − 1.04·17-s + 0.340i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0304i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0304i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $-0.999 - 0.0304i$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1690} (1351, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ -0.999 - 0.0304i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.022372304\)
\(L(\frac12)\) \(\approx\) \(1.022372304\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 - iT \)
13 \( 1 \)
good3 \( 1 - 1.24T + 3T^{2} \)
7 \( 1 + 2.49iT - 7T^{2} \)
11 \( 1 + 5.80iT - 11T^{2} \)
17 \( 1 + 4.29T + 17T^{2} \)
19 \( 1 - 4.04iT - 19T^{2} \)
23 \( 1 - 3.10T + 23T^{2} \)
29 \( 1 + 5.60T + 29T^{2} \)
31 \( 1 + 7.70iT - 31T^{2} \)
37 \( 1 + 2.67iT - 37T^{2} \)
41 \( 1 - 12.5iT - 41T^{2} \)
43 \( 1 + 6.98T + 43T^{2} \)
47 \( 1 - 3.87iT - 47T^{2} \)
53 \( 1 + 4.93T + 53T^{2} \)
59 \( 1 + 10.0iT - 59T^{2} \)
61 \( 1 + 4.93T + 61T^{2} \)
67 \( 1 + 8.01iT - 67T^{2} \)
71 \( 1 + 5.48iT - 71T^{2} \)
73 \( 1 + 8.67iT - 73T^{2} \)
79 \( 1 + 1.82T + 79T^{2} \)
83 \( 1 + 14.6iT - 83T^{2} \)
89 \( 1 - 0.454iT - 89T^{2} \)
97 \( 1 - 8.69iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.053947032814513724938258882725, −8.162096335309311002352094542639, −7.72757527550156415202801669413, −6.45124050972052473398736837090, −5.75199065604603974340786544399, −4.45381374644354356313776306548, −3.48213663614615945758403363601, −3.07782563633889286262413860638, −1.84370188465203423078209376130, −0.32900509271534867055579631166, 1.89247721694668571090948578894, 2.75554475256372367224902261102, 4.05455403171601979152171368282, 4.97738829283400457151935576272, 5.54506200644200595838871109511, 6.80993183086566943475838783993, 7.26241604187176458306641854862, 8.354053642791047798460040890481, 8.953714582685596974193134806272, 9.241636962304498981784386518590

Graph of the $Z$-function along the critical line