L(s) = 1 | − 2-s − 0.956i·3-s + 4-s + (−2.19 − 0.426i)5-s + 0.956i·6-s − 2.15·7-s − 8-s + 2.08·9-s + (2.19 + 0.426i)10-s − 1.30i·11-s − 0.956i·12-s + 2.15·14-s + (−0.408 + 2.09i)15-s + 16-s + 2.87i·17-s − 2.08·18-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.552i·3-s + 0.5·4-s + (−0.981 − 0.190i)5-s + 0.390i·6-s − 0.813·7-s − 0.353·8-s + 0.695·9-s + (0.694 + 0.134i)10-s − 0.393i·11-s − 0.276i·12-s + 0.574·14-s + (−0.105 + 0.542i)15-s + 0.250·16-s + 0.697i·17-s − 0.491·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 + 0.160i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 + 0.160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8111412388\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8111412388\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 + (2.19 + 0.426i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + 0.956iT - 3T^{2} \) |
| 7 | \( 1 + 2.15T + 7T^{2} \) |
| 11 | \( 1 + 1.30iT - 11T^{2} \) |
| 17 | \( 1 - 2.87iT - 17T^{2} \) |
| 19 | \( 1 - 2.65iT - 19T^{2} \) |
| 23 | \( 1 - 5.11iT - 23T^{2} \) |
| 29 | \( 1 + 7.96T + 29T^{2} \) |
| 31 | \( 1 + 4.12iT - 31T^{2} \) |
| 37 | \( 1 - 2.98T + 37T^{2} \) |
| 41 | \( 1 - 8.69iT - 41T^{2} \) |
| 43 | \( 1 - 3.35iT - 43T^{2} \) |
| 47 | \( 1 - 7.30T + 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 + 14.6iT - 59T^{2} \) |
| 61 | \( 1 - 11.2T + 61T^{2} \) |
| 67 | \( 1 - 11.0T + 67T^{2} \) |
| 71 | \( 1 - 14.0iT - 71T^{2} \) |
| 73 | \( 1 - 3.83T + 73T^{2} \) |
| 79 | \( 1 - 8.94T + 79T^{2} \) |
| 83 | \( 1 - 13.9T + 83T^{2} \) |
| 89 | \( 1 - 15.6iT - 89T^{2} \) |
| 97 | \( 1 + 5.05T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.545630024806744282534477335016, −8.187160266838291923423183769500, −7.966328717829541115271978769766, −7.04241387814099402890942648699, −6.42687639965473466559250771549, −5.43630882601796477987972784612, −4.00767588373361771749929165552, −3.41585230483274317690351108324, −1.98156564198715293156783432553, −0.77197306347038137606681935431,
0.60565249501384645446529167344, 2.36862162277753188001805688383, 3.44894992395306286143939244582, 4.21337206007590584618058177927, 5.17132510841250088708139463546, 6.46680456367479088454850813227, 7.18955244169087614666417994436, 7.62308081340457130412795653597, 8.896229777913968784752284890559, 9.213930509149533577516695340170