Properties

Label 2-1690-5.4-c1-0-7
Degree $2$
Conductor $1690$
Sign $-0.674 - 0.738i$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 0.0670i·3-s − 4-s + (−1.65 + 1.50i)5-s + 0.0670·6-s + 5.03i·7-s + i·8-s + 2.99·9-s + (1.50 + 1.65i)10-s − 3.28·11-s − 0.0670i·12-s + 5.03·14-s + (−0.101 − 0.110i)15-s + 16-s − 0.516i·17-s − 2.99i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.0386i·3-s − 0.5·4-s + (−0.738 + 0.674i)5-s + 0.0273·6-s + 1.90i·7-s + 0.353i·8-s + 0.998·9-s + (0.476 + 0.522i)10-s − 0.991·11-s − 0.0193i·12-s + 1.34·14-s + (−0.0260 − 0.0285i)15-s + 0.250·16-s − 0.125i·17-s − 0.706i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.674 - 0.738i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.674 - 0.738i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $-0.674 - 0.738i$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1690} (339, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ -0.674 - 0.738i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7172990927\)
\(L(\frac12)\) \(\approx\) \(0.7172990927\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 + (1.65 - 1.50i)T \)
13 \( 1 \)
good3 \( 1 - 0.0670iT - 3T^{2} \)
7 \( 1 - 5.03iT - 7T^{2} \)
11 \( 1 + 3.28T + 11T^{2} \)
17 \( 1 + 0.516iT - 17T^{2} \)
19 \( 1 - 5.26T + 19T^{2} \)
23 \( 1 - 0.524iT - 23T^{2} \)
29 \( 1 + 6.36T + 29T^{2} \)
31 \( 1 + 6.84T + 31T^{2} \)
37 \( 1 - 5.49iT - 37T^{2} \)
41 \( 1 - 5.54T + 41T^{2} \)
43 \( 1 - 9.35iT - 43T^{2} \)
47 \( 1 - 1.65iT - 47T^{2} \)
53 \( 1 + 9.30iT - 53T^{2} \)
59 \( 1 + 12.8T + 59T^{2} \)
61 \( 1 + 11.5T + 61T^{2} \)
67 \( 1 + 3.38iT - 67T^{2} \)
71 \( 1 + 3.86T + 71T^{2} \)
73 \( 1 + 6.43iT - 73T^{2} \)
79 \( 1 - 7.28T + 79T^{2} \)
83 \( 1 - 2.57iT - 83T^{2} \)
89 \( 1 + 4.82T + 89T^{2} \)
97 \( 1 - 1.88iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.539841587830957232255777258596, −9.139279384873842703800872913779, −7.934545807310635246551547557741, −7.58414963400639043740209123322, −6.32826923306514192678807703657, −5.40730980055003971674506923645, −4.68287931947849662507980954891, −3.41893925647404024781813921159, −2.78441132369346360489630765688, −1.76948934922001609071441447403, 0.28687897157419935748800358349, 1.39834054928661050692309143943, 3.49874462385033021082518190096, 4.12557542068770293591089274771, 4.83704037163358778599848692741, 5.73328675208153887215535693684, 7.15104477658323142789079110480, 7.46084866291118532889009856822, 7.79034346812264655676948681796, 9.023543338321743643057238738715

Graph of the $Z$-function along the critical line