L(s) = 1 | + i·2-s − 0.666i·3-s − 4-s + (2.18 − 0.454i)5-s + 0.666·6-s + 2.41i·7-s − i·8-s + 2.55·9-s + (0.454 + 2.18i)10-s − 1.46·11-s + 0.666i·12-s − 2.41·14-s + (−0.302 − 1.45i)15-s + 16-s + 6.74i·17-s + 2.55i·18-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.384i·3-s − 0.5·4-s + (0.979 − 0.203i)5-s + 0.272·6-s + 0.912i·7-s − 0.353i·8-s + 0.851·9-s + (0.143 + 0.692i)10-s − 0.440·11-s + 0.192i·12-s − 0.645·14-s + (−0.0782 − 0.376i)15-s + 0.250·16-s + 1.63i·17-s + 0.602i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.203 - 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.203 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.804132739\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.804132739\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (-2.18 + 0.454i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + 0.666iT - 3T^{2} \) |
| 7 | \( 1 - 2.41iT - 7T^{2} \) |
| 11 | \( 1 + 1.46T + 11T^{2} \) |
| 17 | \( 1 - 6.74iT - 17T^{2} \) |
| 19 | \( 1 + 7.41T + 19T^{2} \) |
| 23 | \( 1 - 7.48iT - 23T^{2} \) |
| 29 | \( 1 - 0.696T + 29T^{2} \) |
| 31 | \( 1 - 1.36T + 31T^{2} \) |
| 37 | \( 1 - 9.25iT - 37T^{2} \) |
| 41 | \( 1 - 4.24T + 41T^{2} \) |
| 43 | \( 1 + 2.38iT - 43T^{2} \) |
| 47 | \( 1 + 2.77iT - 47T^{2} \) |
| 53 | \( 1 + 7.04iT - 53T^{2} \) |
| 59 | \( 1 - 0.0690T + 59T^{2} \) |
| 61 | \( 1 - 5.91T + 61T^{2} \) |
| 67 | \( 1 + 10.9iT - 67T^{2} \) |
| 71 | \( 1 + 3.60T + 71T^{2} \) |
| 73 | \( 1 - 9.30iT - 73T^{2} \) |
| 79 | \( 1 - 0.766T + 79T^{2} \) |
| 83 | \( 1 - 16.5iT - 83T^{2} \) |
| 89 | \( 1 + 17.7T + 89T^{2} \) |
| 97 | \( 1 - 10.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.524441613498531236667015968399, −8.513830656695063862110707982689, −8.188688803230715969819232077392, −7.00361652023112165150232812467, −6.29083328582694103036602962403, −5.73955844214152086638077350192, −4.87209104717651314144045267404, −3.84459206571364013186337442729, −2.33170406942204297187252319582, −1.50255259839526569912528954135,
0.69935852107848483148856577292, 2.08735739526647091101813023790, 2.90305319971206235340383684329, 4.27991707710052931840353626985, 4.61178041161669136476287635825, 5.77359979155802209098191657871, 6.78999614990177823952476642268, 7.43173407034400393008440821682, 8.638746695560873473204479910962, 9.359451717431954999911772217329