L(s) = 1 | − i·2-s − 2.52i·3-s − 4-s + (0.469 + 2.18i)5-s − 2.52·6-s + 2.37i·7-s + i·8-s − 3.37·9-s + (2.18 − 0.469i)10-s − 1.58·11-s + 2.52i·12-s + 2.37·14-s + (5.51 − 1.18i)15-s + 16-s − 5.98i·17-s + 3.37i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.45i·3-s − 0.5·4-s + (0.210 + 0.977i)5-s − 1.03·6-s + 0.896i·7-s + 0.353i·8-s − 1.12·9-s + (0.691 − 0.148i)10-s − 0.477·11-s + 0.728i·12-s + 0.634·14-s + (1.42 − 0.306i)15-s + 0.250·16-s − 1.45i·17-s + 0.794i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 + 0.210i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.977 + 0.210i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.231999237\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.231999237\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (-0.469 - 2.18i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + 2.52iT - 3T^{2} \) |
| 7 | \( 1 - 2.37iT - 7T^{2} \) |
| 11 | \( 1 + 1.58T + 11T^{2} \) |
| 17 | \( 1 + 5.98iT - 17T^{2} \) |
| 19 | \( 1 - 3.46T + 19T^{2} \) |
| 23 | \( 1 + 6.63iT - 23T^{2} \) |
| 29 | \( 1 - 2.74T + 29T^{2} \) |
| 31 | \( 1 + 3.46T + 31T^{2} \) |
| 37 | \( 1 + 9.11iT - 37T^{2} \) |
| 41 | \( 1 + 10.0T + 41T^{2} \) |
| 43 | \( 1 - 0.644iT - 43T^{2} \) |
| 47 | \( 1 + 10.3iT - 47T^{2} \) |
| 53 | \( 1 + 5.04iT - 53T^{2} \) |
| 59 | \( 1 - 6.63T + 59T^{2} \) |
| 61 | \( 1 + 6.74T + 61T^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 - 12.6T + 71T^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 - 4.74T + 79T^{2} \) |
| 83 | \( 1 + 8.74iT - 83T^{2} \) |
| 89 | \( 1 - 1.87T + 89T^{2} \) |
| 97 | \( 1 + 6.74iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.943011270692973378509186840850, −8.158255623721101552795189608219, −7.26329801420401946975672988467, −6.76539309025330617208831595176, −5.77969419213408344826527467539, −5.03115084811912059642402936037, −3.40358766286453853302425057678, −2.50588658403738944969464110959, −2.06688548684577528352199527012, −0.48995254482038308987657870019,
1.34138023488007654016971326811, 3.39352502360469439332703094663, 4.04201962428114781255162470072, 4.87536431101210529316421388515, 5.38780713459781740694367449037, 6.31579385805556980159510685655, 7.53257742662798366878499970874, 8.199777249271678834150133559714, 8.989645067172018217472359048980, 9.707336974346921194994189098109