L(s) = 1 | − i·2-s + 2.89i·3-s − 4-s + (−1.44 − 1.70i)5-s + 2.89·6-s + 4.38i·7-s + i·8-s − 5.38·9-s + (−1.70 + 1.44i)10-s − 2·11-s − 2.89i·12-s + 4.38·14-s + (4.93 − 4.19i)15-s + 16-s + 5.86i·17-s + 5.38i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.67i·3-s − 0.5·4-s + (−0.647 − 0.762i)5-s + 1.18·6-s + 1.65i·7-s + 0.353i·8-s − 1.79·9-s + (−0.538 + 0.457i)10-s − 0.603·11-s − 0.835i·12-s + 1.17·14-s + (1.27 − 1.08i)15-s + 0.250·16-s + 1.42i·17-s + 1.26i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.762 + 0.647i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.762 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2113786596\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2113786596\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (1.44 + 1.70i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 2.89iT - 3T^{2} \) |
| 7 | \( 1 - 4.38iT - 7T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 17 | \( 1 - 5.86iT - 17T^{2} \) |
| 19 | \( 1 + 0.973T + 19T^{2} \) |
| 23 | \( 1 + 7.79iT - 23T^{2} \) |
| 29 | \( 1 + 0.973T + 29T^{2} \) |
| 31 | \( 1 - 1.79T + 31T^{2} \) |
| 37 | \( 1 - 0.591iT - 37T^{2} \) |
| 41 | \( 1 + 4.81T + 41T^{2} \) |
| 43 | \( 1 + 4.68iT - 43T^{2} \) |
| 47 | \( 1 + 0.381iT - 47T^{2} \) |
| 53 | \( 1 + 7.79iT - 53T^{2} \) |
| 59 | \( 1 + 0.973T + 59T^{2} \) |
| 61 | \( 1 + 0.817T + 61T^{2} \) |
| 67 | \( 1 + 1.79iT - 67T^{2} \) |
| 71 | \( 1 - 3.92T + 71T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 + 10.9T + 79T^{2} \) |
| 83 | \( 1 + 6.97iT - 83T^{2} \) |
| 89 | \( 1 - 0.973T + 89T^{2} \) |
| 97 | \( 1 - 18.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.914074236566597210843135056856, −8.946114415799620957042032222124, −8.653518092513455477556272873882, −8.088096963577961629098063731479, −6.20453511187055074093560416033, −5.34301471443174326921875196656, −4.80143269876903844644337905766, −4.00375827052342296479312051294, −3.14602098762121065812877992956, −2.11377932089941415207015971715,
0.087069049613404305233188994865, 1.19682268467266008988831935260, 2.73834397609305040470025598667, 3.69953384113011806359785009108, 4.84089813890087779243335022612, 5.98507417745761487824598796042, 6.85713661852566873615385300314, 7.33422428863886622626706293133, 7.60227027536356145412788662049, 8.324945006823865992465988227717