Properties

Label 2-13e2-1.1-c7-0-28
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.90·2-s − 90.5·3-s − 119.·4-s + 240.·5-s + 262.·6-s + 1.39e3·7-s + 718.·8-s + 6.00e3·9-s − 698.·10-s − 499.·11-s + 1.08e4·12-s − 4.03e3·14-s − 2.17e4·15-s + 1.32e4·16-s + 8.98e3·17-s − 1.74e4·18-s + 1.31e4·19-s − 2.87e4·20-s − 1.25e5·21-s + 1.44e3·22-s + 2.61e4·23-s − 6.49e4·24-s − 2.01e4·25-s − 3.45e5·27-s − 1.66e5·28-s + 9.40e4·29-s + 6.32e4·30-s + ⋯
L(s)  = 1  − 0.256·2-s − 1.93·3-s − 0.934·4-s + 0.861·5-s + 0.496·6-s + 1.53·7-s + 0.495·8-s + 2.74·9-s − 0.220·10-s − 0.113·11-s + 1.80·12-s − 0.392·14-s − 1.66·15-s + 0.807·16-s + 0.443·17-s − 0.703·18-s + 0.438·19-s − 0.804·20-s − 2.96·21-s + 0.0290·22-s + 0.448·23-s − 0.959·24-s − 0.257·25-s − 3.37·27-s − 1.43·28-s + 0.715·29-s + 0.427·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.128749428\)
\(L(\frac12)\) \(\approx\) \(1.128749428\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 2.90T + 128T^{2} \)
3 \( 1 + 90.5T + 2.18e3T^{2} \)
5 \( 1 - 240.T + 7.81e4T^{2} \)
7 \( 1 - 1.39e3T + 8.23e5T^{2} \)
11 \( 1 + 499.T + 1.94e7T^{2} \)
17 \( 1 - 8.98e3T + 4.10e8T^{2} \)
19 \( 1 - 1.31e4T + 8.93e8T^{2} \)
23 \( 1 - 2.61e4T + 3.40e9T^{2} \)
29 \( 1 - 9.40e4T + 1.72e10T^{2} \)
31 \( 1 - 2.38e5T + 2.75e10T^{2} \)
37 \( 1 + 2.36e5T + 9.49e10T^{2} \)
41 \( 1 + 3.10e5T + 1.94e11T^{2} \)
43 \( 1 - 1.31e5T + 2.71e11T^{2} \)
47 \( 1 - 2.34e4T + 5.06e11T^{2} \)
53 \( 1 - 1.19e6T + 1.17e12T^{2} \)
59 \( 1 - 2.69e6T + 2.48e12T^{2} \)
61 \( 1 + 6.48e5T + 3.14e12T^{2} \)
67 \( 1 + 1.50e6T + 6.06e12T^{2} \)
71 \( 1 + 2.54e6T + 9.09e12T^{2} \)
73 \( 1 - 2.06e6T + 1.10e13T^{2} \)
79 \( 1 + 2.23e6T + 1.92e13T^{2} \)
83 \( 1 + 7.41e6T + 2.71e13T^{2} \)
89 \( 1 + 5.29e6T + 4.42e13T^{2} \)
97 \( 1 + 3.34e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.45741264818736042973196410973, −10.40951119045918743168155239908, −9.878471679617092080668218419185, −8.413582881895969713964167457156, −7.18212200703356598608705610718, −5.78201744869466467580330101670, −5.14284691615251895848321688136, −4.38874738921313331570755641018, −1.56110642515577581195038853361, −0.76269369492339387347057712658, 0.76269369492339387347057712658, 1.56110642515577581195038853361, 4.38874738921313331570755641018, 5.14284691615251895848321688136, 5.78201744869466467580330101670, 7.18212200703356598608705610718, 8.413582881895969713964167457156, 9.878471679617092080668218419185, 10.40951119045918743168155239908, 11.45741264818736042973196410973

Graph of the $Z$-function along the critical line