Properties

Label 2-13e2-1.1-c7-0-73
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 21.6·2-s + 79.0·3-s + 340.·4-s − 120.·5-s + 1.71e3·6-s + 240.·7-s + 4.58e3·8-s + 4.06e3·9-s − 2.61e3·10-s − 1.08e3·11-s + 2.68e4·12-s + 5.19e3·14-s − 9.54e3·15-s + 5.57e4·16-s − 2.73e4·17-s + 8.79e4·18-s + 2.50e4·19-s − 4.10e4·20-s + 1.89e4·21-s − 2.35e4·22-s − 8.02e4·23-s + 3.62e5·24-s − 6.35e4·25-s + 1.48e5·27-s + 8.16e4·28-s − 1.19e5·29-s − 2.06e5·30-s + ⋯
L(s)  = 1  + 1.91·2-s + 1.69·3-s + 2.65·4-s − 0.431·5-s + 3.23·6-s + 0.264·7-s + 3.16·8-s + 1.85·9-s − 0.825·10-s − 0.246·11-s + 4.49·12-s + 0.505·14-s − 0.730·15-s + 3.40·16-s − 1.35·17-s + 3.55·18-s + 0.838·19-s − 1.14·20-s + 0.447·21-s − 0.470·22-s − 1.37·23-s + 5.35·24-s − 0.813·25-s + 1.45·27-s + 0.702·28-s − 0.906·29-s − 1.39·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(12.23568569\)
\(L(\frac12)\) \(\approx\) \(12.23568569\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 21.6T + 128T^{2} \)
3 \( 1 - 79.0T + 2.18e3T^{2} \)
5 \( 1 + 120.T + 7.81e4T^{2} \)
7 \( 1 - 240.T + 8.23e5T^{2} \)
11 \( 1 + 1.08e3T + 1.94e7T^{2} \)
17 \( 1 + 2.73e4T + 4.10e8T^{2} \)
19 \( 1 - 2.50e4T + 8.93e8T^{2} \)
23 \( 1 + 8.02e4T + 3.40e9T^{2} \)
29 \( 1 + 1.19e5T + 1.72e10T^{2} \)
31 \( 1 + 1.04e4T + 2.75e10T^{2} \)
37 \( 1 - 2.25e5T + 9.49e10T^{2} \)
41 \( 1 - 8.21e5T + 1.94e11T^{2} \)
43 \( 1 - 3.26e5T + 2.71e11T^{2} \)
47 \( 1 - 1.88e5T + 5.06e11T^{2} \)
53 \( 1 - 1.41e6T + 1.17e12T^{2} \)
59 \( 1 + 2.19e6T + 2.48e12T^{2} \)
61 \( 1 + 1.41e6T + 3.14e12T^{2} \)
67 \( 1 + 1.71e6T + 6.06e12T^{2} \)
71 \( 1 - 1.44e6T + 9.09e12T^{2} \)
73 \( 1 + 2.13e6T + 1.10e13T^{2} \)
79 \( 1 - 2.32e6T + 1.92e13T^{2} \)
83 \( 1 - 3.21e6T + 2.71e13T^{2} \)
89 \( 1 - 2.06e6T + 4.42e13T^{2} \)
97 \( 1 + 8.98e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.83738910992813461360139722124, −10.83389827157981905805865815837, −9.406152926247818840707622743788, −7.937203041030131267969671390986, −7.36915341007847522572208115392, −5.96029222504225143025388329799, −4.44156900137458239063504360155, −3.81231990917465660473066492483, −2.69952814947173114174843857814, −1.88054623949308911396458729081, 1.88054623949308911396458729081, 2.69952814947173114174843857814, 3.81231990917465660473066492483, 4.44156900137458239063504360155, 5.96029222504225143025388329799, 7.36915341007847522572208115392, 7.937203041030131267969671390986, 9.406152926247818840707622743788, 10.83389827157981905805865815837, 11.83738910992813461360139722124

Graph of the $Z$-function along the critical line