Properties

Label 2-13e2-1.1-c7-0-3
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.8·2-s − 26.1·3-s + 12.1·4-s − 422.·5-s − 309.·6-s − 1.21e3·7-s − 1.37e3·8-s − 1.50e3·9-s − 4.99e3·10-s + 4.48e3·11-s − 317.·12-s − 1.43e4·14-s + 1.10e4·15-s − 1.77e4·16-s − 3.44e4·17-s − 1.77e4·18-s − 2.83e4·19-s − 5.12e3·20-s + 3.17e4·21-s + 5.30e4·22-s + 3.09e4·23-s + 3.58e4·24-s + 1.00e5·25-s + 9.64e4·27-s − 1.47e4·28-s − 4.40e4·29-s + 1.30e5·30-s + ⋯
L(s)  = 1  + 1.04·2-s − 0.559·3-s + 0.0948·4-s − 1.51·5-s − 0.585·6-s − 1.33·7-s − 0.947·8-s − 0.687·9-s − 1.58·10-s + 1.01·11-s − 0.0530·12-s − 1.40·14-s + 0.844·15-s − 1.08·16-s − 1.69·17-s − 0.719·18-s − 0.948·19-s − 0.143·20-s + 0.749·21-s + 1.06·22-s + 0.531·23-s + 0.529·24-s + 1.28·25-s + 0.943·27-s − 0.127·28-s − 0.335·29-s + 0.883·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2488781073\)
\(L(\frac12)\) \(\approx\) \(0.2488781073\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 11.8T + 128T^{2} \)
3 \( 1 + 26.1T + 2.18e3T^{2} \)
5 \( 1 + 422.T + 7.81e4T^{2} \)
7 \( 1 + 1.21e3T + 8.23e5T^{2} \)
11 \( 1 - 4.48e3T + 1.94e7T^{2} \)
17 \( 1 + 3.44e4T + 4.10e8T^{2} \)
19 \( 1 + 2.83e4T + 8.93e8T^{2} \)
23 \( 1 - 3.09e4T + 3.40e9T^{2} \)
29 \( 1 + 4.40e4T + 1.72e10T^{2} \)
31 \( 1 - 6.80e4T + 2.75e10T^{2} \)
37 \( 1 + 9.44e4T + 9.49e10T^{2} \)
41 \( 1 - 7.13e5T + 1.94e11T^{2} \)
43 \( 1 + 6.83e5T + 2.71e11T^{2} \)
47 \( 1 + 7.16e5T + 5.06e11T^{2} \)
53 \( 1 + 1.76e6T + 1.17e12T^{2} \)
59 \( 1 + 1.98e6T + 2.48e12T^{2} \)
61 \( 1 - 2.19e6T + 3.14e12T^{2} \)
67 \( 1 + 1.18e6T + 6.06e12T^{2} \)
71 \( 1 - 6.65e5T + 9.09e12T^{2} \)
73 \( 1 - 5.30e5T + 1.10e13T^{2} \)
79 \( 1 + 5.90e6T + 1.92e13T^{2} \)
83 \( 1 - 5.22e6T + 2.71e13T^{2} \)
89 \( 1 + 1.07e7T + 4.42e13T^{2} \)
97 \( 1 - 7.77e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.63764346999167822684200839254, −11.03580155421522753934697638696, −9.307072892708129184795018843596, −8.488492019044810953699131033525, −6.74604100756608969868510229340, −6.24079584307209648768126305645, −4.69478155351847089055341025613, −3.88640533249382652520563794263, −2.95125690535833968791628242455, −0.22743535763911488355070707700, 0.22743535763911488355070707700, 2.95125690535833968791628242455, 3.88640533249382652520563794263, 4.69478155351847089055341025613, 6.24079584307209648768126305645, 6.74604100756608969868510229340, 8.488492019044810953699131033525, 9.307072892708129184795018843596, 11.03580155421522753934697638696, 11.63764346999167822684200839254

Graph of the $Z$-function along the critical line